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THE STRESSED SHAPE OF AXISYMMETRIC 
HEXAGONAL NETS 

István Hegedűs* 

 
 

ABSTRACT 

The paper presents the theoretical background to a numerical method for calculat-
ing the meridians of axisymmetric stressed shapes of infinitesimal hexagonal grids. Two 
types of stressing are assumed, one with a pure tension and another when tension is 
combined with twist. Also some results of an illustrative example are given.  

 
 

1. INTRODUCTION 

In a previous paper (Hegedűs 2004), the author presented an analysis of axisym-
metric shapes of stressed infinitesimal Chebyshev nets. Chebyshev nets consist of two 
sets of continuous, flexible, inextensional fibres connected to each other at equidistant 
points. In original state, the net has a square network. It can be deformed like woven 
tissues. Most analyses assume the distance of points of connections infinitesimally 
small (infinitesimal net), and replace the net for a membrane with incomplete rigidities. 
Both finite and infinitesimal Chebyshev nets are typical underconstrained structures 
(Kusnetsov 1991) that can develop large displacements without the change in length in 
fibre directions.  

The shape of stressed membranes of incomplete rigidities is determined using the 
consideration that inextensional deformations modify the initial shape until the surface 
gets rigid, that is, the missing rigidities are not necessary to develop stresses resisting 
against further deformation. Equilibrium conditions for the possible membrane forces 
can be used to determine the assumed shape.  

For axisymmetric stressed shapes the equilibrium of membrane forces requires 
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where nα, and nθ are membrane forces, rα, and nθ are radii of principal curvatures in me-
ridian, and in annular directions, respectively.  

If the initial (unstressed) configuration of the net is a cylinder of the radius a with 
given directions of the fibres, then the stressed shape is a surface of revolution with the 
meridian r(z). Ratio r/a determines the directions of the intersecting fibres, fibre direc-
tions determine the ratio of  nα, and nθ . On the other hand, ratio of  rα, and rθ can be ex-
pressed using derivatives of r(z) as 
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in this way an equation can be constructed which only contains r(z), r(z)’, and r(z)” as 
unknown functions. Since r(z)” can be expressed from this equation, the rearranged 
equation permits us a numeric integration of  r(z) after taking appropriate initial values 
for r(z0 ), and r(z0)’. For specific initial values, analytic function for the meridian of the 
stretched axisymmetric Chebysev net can be obtained.  

Hexagonal nets are a fundamental pattern of assemblies in the nature as well as in 
the theory of nets. Unlike Chebyshev nets, they consist of not continuous fibres (Fig 1.). 
In initial state, fibres of hexagonal nets form a regular hexagonal network. Finite and 
infinitesimal hexagonal nets are also underconstrained surfaces, their deformability is 
more or less the same as that of knitted fabrics or crochets. 

In the next chapter, homogeneous deformations of finite and infinitesimal plane 
hexagonal nets are analysed. The results are used in Chapter 3. to determine the merid-
ian of axisymmetric stressed shapes of infinitesimal hexagonal nets  

 
 

2. HOMOGENEOUS DEFORMATIONS OF PLANE HEXAGONAL NETS 

Homogeneous deformation means in our case that all hexagons of the net deform 
in the same way. That is only possible if parallel fibres of the net stay parallel after the 
deformation. Two types of homogeneous deformation will be assumed: symmetric, and 
asymmetric deformation. Symmetric means that the deformation does not upset the mir-
ror symmetry of the net.  

First-order theory of deformations assumes that powers of small changes in length 
can be neglected. In first-order theory, regular hexagonal nets are discrete models for 
surfaces that can only perform deformations which preserve the area of the surface 
meanwhile they develop a hydrostatic state of stress against stretching (Kollár – 
Hegedűs 1985). These  properties can be checked by analysing the deformations of the 
elementary cell shown in Fig 1 and by checking the equilibrium of nodal forces. 
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Fig 1. Elementary cell of the hexagonal net in initial state 
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Actually, if fibres of the cell are assumed absolutely rigid and powers of small 

changes in length are neglected, then small deformations of the cell preserve the area  
233 lA =                                              (3) 

The analysis of the neglected terms shows that 233 lA =  is the maximum area of the 
elementary cell. Analogous joints of the net displace as if they were points of a continu-
ous surface subjected to a homogeneous state of strain with principal strains  

ε1 = - ε2 .                                               (4) 

This surface will be referred as the replacement membrane of the net. 
Forces acting at a common point of application at lines of action in the directions 

α, α +  π/3, and α + 2π/3 must be the same. That means, in initial state of the net, forces 
acting at the fibres are either zero or equal. This force distribution is the analogue of hy-
drostatic states of stress of continuous membranes. If the value of the fibre forces is N, 
then principal membrane stresses of the replacement membrane are 

n1 = n2 = l
N

3
3 .                                      (5) 

Strains developed in stressing the net cannot be assumed small. Consequently, 
first-order theory has to be replaced for geometrically exact theory of deformation. 

 
2.1.  Geometrically exact symmetric deformation 

Let us first analyse finite symmetric deformations shown in Fig 2. The changes in 
the geometry and in the equilibrium conditions of nodal forces will be expressed using α 
as geometric parameter.  
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Fig2. Elementary cell of the symmetrically deformed hexagonal net  

 
Finite strains in directions x, and y can be expressed matching side lengths of the 

elementary cell in initial and deformed states of the net. Ratios of the lengths are 
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( ) ( )
3
sin121 αε +=+ y .                                   (7) 

Assuming N the fibre force at the bars in direction y, equilibrium of joint forces 
can be ensured by forces N/(2sinα) at the inclined bars. Principal directions of the re-
placement membrane forces are directions  x, and y, the membrane forces are 
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αcos2l
Nny = ,            nxy = 0 .                             (9, 10) 

Limiting values of  α are 0, and π/2 . If α = 0,  

3
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if α = π/2, 
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2.2.  Asymmetric homogeneous deformation 

Asymmetric homogeneous deformations are analysed using two angles as geo-
metric parameters. One is α, the same as used in the previous section, another is γ which 
is the angle of inclination of fibres 1 in Fig 3.  

General description of homogeneous deformation needs a third geometric parame-
ter e.g. the angle of the rigid body-like rotation of the whole net, but our analysis does 
not need that generalisation. 
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Fig 3. Elementary cell, and vector diagram of equilibrium forces in the state of skew 
finite deformation 

 
Finite deformations in directions x, and y are  
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3
cos321 αε =+ x ,     ( ) ( )

3
sincos21 αγε +=+ y ,            (11,12) 

tangent of the finite angle of distortion γ0 is 
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Ratios N2/ N1, and N3/ N1 of bar forces acting at fibres 1, 2, and 3 can be expressed 
from the vector diagram of equilibrium forces (Fig 3.) as  
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Replacement membrane forces can be obtained in two steps. First, oblique com-
ponents membrane forces can be calculated, which are parallel with the sides of the de-
formed elementary cell, then components can be expressed in usual orthogonal resolu-
tion. Neglecting details the lengthy procedure results in 
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Limiting values of γ are ± π/2. 
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3.  STRESSING CYLINDERS OF HEXAGONAL NET 

A rotationally symmetric stressed hexagonal net is produced in steps as follows. 
First, a regular plane net is bent and welded into a cylinder of the radius, and height a, H 
respectively. Then, cylindrical edges are fixed to rigid boundary rings . Finally, the dis-
tance of the boundaries is increased until the net gets stressed. 

Bending will be assumed in two ways. One, when generators of the cylinder are 
parallel with x (Case 1), and another, when they are parallel with y (Case 2).  

Also stretching will be assumed in two ways. One when the distance of the 
boundaries is increased with parallel moving in direction of the axis of rotation, and an-
other, when the parallel moving is combined with a rotation of the boundary circles. 
Both types of stressing preserve the axisymmetric nature of the cylinder. 

3.1. Analysis using first-order infinitesimal theory 

In first-order theory of infinitesimal deformations, invariance of area of the ele-
mentary cell can be assumed. On the basis of that invariance, the problem of determin-
ing stressed shape of the cylinder can be directly converted to a minimal surface prob-
lem: what is the meridian of the axisymmetric minimal surface of surface area 2πHa and 
of boundary radii a. Cases 1, and 2 are the same and rotating of the boundary circles has 
no effect on the solution. 

In (H. Pálfalvi and Hegedűs 2003), it is proven that this problem can only be 
solved for limited values of H/a,  and also a dual solution exists. Meridians are 

C
zCr cosh=  .                                        (18) 

Parameter C and the changed height h of the net emerge as solutions of Eqs(19a-b): 

a
C
hC =

2
cosh ,            Ha

C
hCCh πππ 2sinh2 2 =+               (19a,b) 

3.2.  Analysis using geometrically exact theory 

Since first order theory yields reliable results only in a drastically limited range of 
parameters, a geometrically exact infinitesimal theory is applied. ‘Infinitesimal’ means, 
that a replacement membrane is used, ‘geometrically exact’ means, that geometric rela-
tions at infinitesimal neighbourhood of points of the membrane are analysed as if they 
were homogeneous plane deformations in the tangent plane, that is, in cases of symmet-
ric deformations Eqs (6)-(10), in case on asymmetric deformation Eqs (11)-(17) can be 
used. 

 
3.2.1.  Stressing with pure tension 

Case 1 

In Case 1 meridian of the replacement membrane coincides with direction x (see 
Fig 2). Consequently, nα = nx,  nθ = ny, εα = εx, εθ =εy , 
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and α varies within the limits π/6, and zero. 
According to the procedure outlined in Section 1, r(z)” can be expressed on the 

basis of Eqs (1)-(2), and Eqs (8)-(9) as 
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Connection between r, and α can be obtained using  

( ) ( )
3
sin121 αεθ

+=+=
a
r .                                (22) 

Expressing sinα from Eq(22) and introducing it into Eq(21) results in a second-
order nonlinear differential equation for r(z). Though the order of this equation can be 
reduced to one, r(z) cannot be integrated in a closed form.  

Let the length of an infinitesimal section of the generator of the lattice cylinder be 
ds0. The change in length of ds0 due to stressing is 

( ) 00 3
cos321 dsdsds αεαα =+= .                                 (23) 

Differentials dz, and dr belonging to ds0 are  
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Eqs (21)-(24) enable us to construct a step-by-step method for computing coordi-
nates z, and r of meridians belonging to initial values z0, r0>2a/3, and r0’. 

Case 2 

In Case 2 directions x, and y change, consequently,  
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and the connection between r, and α can be calculated from 
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3
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a
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where α varies within the limits π/6, and π/2. This equation shows that r can take arbi-
trary small values. The change in length of ds0 is 

( ) ( )
00 3

sin121 dsdsds αεαα
+=+=                               (27) 

On the basis of Eqs (24)-(27) a similar step-by-step method for computing coordi-
nates z, and r of meridians can be constructed as shown for Case 1. 
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3.2.3.  Stressing with a normal force and a torque 

Equilibrium conditions for axisymmetric membrane forces of a shell of rotation 
can also met by assuming membrane force nαθ provided the equation 

Tnr =αθπ22                                               (28) 

apply for each parallel circle of the shell. T  has a direct mechanical meaning in Eq (28). 
It is a torque. A similarly constant value is  

( )
F

r

n
r =

′+ 21
2 απ ,                                         (29) 

which is a tensile force acting at the axis of rotation. The ratio of T and Fa is also con-
stant.  

In Case 1, the only effect of  torque T is that forces at fibres inclined to the right 
and left get different. This change does not modify the stressed equilibrium shape, pro-
vided the tensile force is sufficiently large to keep inclined fibres of both directions in 
tension. 

In Case 2, fibres of meridian direction cannot transfer shear. Fibres 1. also have to 
get inclined and the deformation becomes asymmetric. The angle of inclination is de-
termined by the equation 

( ) γtan1 2rr
F
T ′+= .                                     (30) 

Eq  (30) shows that γ varies along the meridian.  
Inclination of fibres 1 changes the equilibrium shape of the stressed net. Eqs(1)-

(2), and Eqs (15)-(16) yield for the second derivative of r 
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Connection of α and r/a is the same as given by Eq(26) in Case 2, but the changed 
length of ds0 is different: 

( ) ( )
00 3

sincos21 dsdsds αγεαα
+=+= .                      (32) 

The step-by-step method of the solution can be the same as used before, excepting 
that angle γ also has to be calculated in each step. 

 
 

4. ILLUSTRATIVE EXAMPLE 

In Fig. 4, the results of an illustrative example are presented. The half of the me-
ridian of a stressed infinitesimal net are plotted for Case 1, in Case 2, and for Case 2 as-
suming also a torque T = 0.4aF. Ratio H/a is 4, the meridian of the unstressed net is 
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drawn with dotted line. Only geometrically exact theory has been used because H/a = 4 
does not permit mathematical solutions of the minimal surface problem.   
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Fig 4. Meridians of a stressed hexagonal net 

Meridian belongs to Case 1 obeys the limitation r ≥  2a/3 and its first section is 
close to a straight line indicating the limit value of r. Increasing ratio H/a results in 
small changes in the last section, only the length of the almost straight section increases. 
A detailed analysis (Wunderlich 1973) has shown that meridians shifted in r direction 
by -2/3 are the same as those of stressed rhombic nets analysed e.g. in (Hegedűs 2004). 

In Case 2, meridians are different, because the limiting value of r is zero and the 
meridian gets as closer to zero as higher the ratio H/a is. In this respect, meridians in 
Case 2 look similar to those of stressed rhombic nets, however, no affinity can be find.  

The third meridian shows that torque reduces both the stressed height and the 
minimum radius. For increasing values of the torque the difference between twisted and 
not twisted nets increases, beyond a limiting value of  T/aF the problem has no solution. 

 
 

5.  CONCLUSIONS 

The results have shown that the analysis of axisymmetric shapes of stressed infini-
tesimal hexagonal nets requires the use of a geometrically exact infinitesimal theory of 
deformation. Meridians of the stressed net essentially depend on the direction of the not 
continuous fibres. Also the effect of twist is different if the orientation of the fibres are 
different. 
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