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Single-layer steel grid shells 

Free-form structures 
 
Roof structures, triangular network 
 
Shell+beam-like behaviour 
Shell buckling, snap-through 
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British Museum, Great Court Roof, London 

Melbourne Stadium 

CET, Budapest Metro station roof, Budapest 



Motivation 

Can we improve the structural behaviour by changing the geometry? 
 

Geometry: beam length, angles, mesh density, topology 

 
Improvement in structural behaviour: maximizing load-bearing capacity 

 
Mesh, grid: network of beam centrelines 

 
Load bearing capacity: 
 Nonlinear, numerical analysis  
 
Moving the nodes along a predefined surface: 
 
    Fix          - surface, topology,  
  boundary nodes 
    Variables   - inner nodes  
 
 
 

[Kaveh, 2011] 
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Mesh, grid: network of beam centrelines 

 
Load bearing capacity: 
 Nonlinear, numerical analysis  
 
Moving the nodes along a predefined surface: 
 
    Fix          - surface, topology,  
  boundary nodes 
    Variables   - inner nodes  
 
 
Topology and size optimization in literature: simple mesh types, simple surfaces           Mesh generating algorithm 

 

[Kaveh, 2011] 
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Method 

Process and steps of grid pattern optimization 
 

 
 

          Kitti Gidófalvy                  9th fib Int. PhD Symposium, Karlsruhe      3/22
   



Method 

Process and steps of grid pattern optimization 
Contents of presentation: 
- Analysis - Structural model 
- Analysis - Solver 
- qcr : load bearing capacity 
- Load, fitness function 
- Automated grid generation process 
- Results - domes, free-form surfaces 
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Analysis – Model 

Finitel element model 
  
Beam finite elements 
 
Ridig nodes, fixed supports 
 
Perfectly elasto-plastic material model 
 
Vertical nodal loads 
 
Section: pipe: CHS 146*5 (r=73mm, t=5mm)  
 
Steel grade: S235 
 
Plasticity is not a typical failure mode  
   Beam length, λrel= 1÷1,8 
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Analysis – Solver 

Arc-length method 

Geometrically nonlinear analysis,  
 no imperfections 
 
Instable behaviour 
 
Load displacement curves               qcr 

 
ANSYS  
 
Radius of arc-length: 
 - exact maximal load 
 - post-critical behaviour 
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Analysis – Load 

Vertical nodal loads 
Uniform nodal loads 
Uniform distributed load – transferred to nodes based on triangular areas 
 

Fcr [kN]                  qcr [kN/m2]  qcr*Ainner/A [kN/m2]  
 

Fitness function: 
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Geometry 

Automated mesh generation 
 
Goal 
- mesh – beam centrelines 
- applicable for free form surfaces (NURBS) 
- equidistant supports 
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Geometry 

Automated mesh generation 
 
Goal 
- mesh – beam centrelines 
- applicable for free form surfaces (NURBS) 
- equidistant supports 
 
Method: slicing the surface with 2 sets of bent planes  
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Geometry 

Automated mesh generation 
 
Goal 
- mesh – beam centrelines 
- applicable for free form surfaces (NURBS) 
- equidistant supports 
 
Method: slicing the surface with 2 sets of bent planes  
    
Relaxation: refining the initial grid 
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Geometry 

Automated mesh generation - generated meshes 
 Basic parameter: division number: n   mesh density, coarseness 
 
Dome: 
 
 
 
 
 
 
 
 
 
 
Free-form: 

n = 3              n = 4      n = 5                  n = 7            n = 8                       n = 9  

n = 5        n = 7      n = 10 
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Results – Coarse mesh – Dome 10 

Coarse mesh 
 
Generated mesh – relaxed mesh 

Double symmetric layout – nodes are constrained 

No difference in qcr 
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Results – Coarse mesh – Dome, n= 10 

Improvement: 18 % 
 
Initial mesh 
Optimal mesh 

Coarse mesh 
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Results – Coarse mesh – Dome, n=10 

Coarse mesh 
 
Different failure modes 

Initial 

Optimal 
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Results – Coarse mesh – Free-form #1, n=7 

Coarse mesh 
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Results – Coarse mesh – Free-form #1, n=7 

Coarse mesh 
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28 % 

Initial mesh 
Optimal mesh 



Results – Coarse mesh – Free-form #1, n=7 

Coarse mesh 
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35 % 

Initial mesh 
Optimal mesh 



Results – Coarse mesh – Free-form #1, n=7 

Different failure modes 

Initial mesh – element buckling 

Optimal mesh – snap through of 3 nodes  
+ plasicity 

20 mm                      97 mm 

28 mm 
 
  
51 mm 

197 mm 
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Results – Dome, n=42 

Failure mode: plasticity Initial - 7,96 kN/m2 

Relaxed = Optimal - 8,21 kN/m2 

4 % 
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Results – Free-form #1, n=14 

Relaxed 2,14 kN/m2 Initial (generated) 2,06 kN/m2 Modified 3,20 kN/m2 

Optimal 4,11 kN/m2 

 

100 % 
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Results – Free-form #1, n=29 

 Initial mesh (unrelaxed)    3,96 kN/m2             4,10 kN/m2            Optimal  
        3,56 kN/m2        4,23 kN/m2 

Failure mode:  
Shell buckling (many nodes involved) due to very shallow surface 
Nodes can not move away from here 
 
Different initial surface suggested 

19 % 
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Results – Free-form #2 
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Modifying the surface 
NURBS control points 



Results – Free-form #2, n=24 

Plastic failure 

Initial mesh - 5,45 kN/m2 
Relaxed mesh - 7,06 kN/m2 

Optimal mesh - 7,16 kN/m2 
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31 % 



Conclusions 
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Developed a method for grid pattern optimization 
 
The significant effect of member grid pattern on load bearing capacity of single-layer 
steel grid shells has been demonstrated 



Conclusions 

Domes + freeform surfaces; coarse + dense meshes; various beam lengths 

Beam length and failure modes are different! 

Surface Number of 
inner nodes 

Load bearing capacity [kN/m2] 

Initial Relaxed Optimal Improvement [%] 

Dome, H/L=0,2 10 1,99 2,08 2,37 14 

        10 sym. 1,99 2,08 2,35 14 

42 7,96 8,21 8,25 4 

Free-form #1, L=25m 7 1,92 1,88 2,46 28 

14 2,06 2,14 4,11 100 

29 3,56 - 4,23 19 

Free-form #2, L=26m 24 5,45 7,06 7,16 31 
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1.   Improvement achieved by optimization is highly dependant on failure modes, 
2.   Understanding the failure modes is important – generally failure  is different for initial and optimal 
 grid pattern  local to global 
3.   More efficient for coarse meshes with less node number,  
 surface is not approximated well enough 
4.   Dome: symmetry               aesthetic results 
5.   Higher node numbers for freeform structures: the mesh is distored for practical use  
 Optimality criteria should be more complex (e.g. incuding maximal beam length) 
6.   Dense meshes: in certain cases (probably depending on failurethe mode) relaxation results in the 
 same mesh as the optimization – fast process 



Further investigations 

Optimization 
- Fitness function 
- Very slow 
- More realistic load cases – multidisciplinary 

optimization 

Settings of arc-length method 
 
Imperfection 
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- Exact nonlinear analysis 
- First eigenmode 
- High effect on qcr : 20÷90 % 
- Depends on:  

- Surface 
- Mesh density, beam length 
- Scale 

 
Imperfection sensitivity analysis before  
 each optimization process 
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