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Abstract  
 
Cold-formed thin-walled Z-purlins and cladding systems are widely used in steel industrial 

type buildings. In my research work I analysed the various components of cold-formed roof 
systems by experimental and numerical methods with the aim to define the behaviour modes 
of structural elements and details, and determine the test based design resistances in the lack 
of standardized methodology. The main details of my research are presented as follows. 

In the first phase I designed and executed an experimental test program for compressed 
cold-formed thin-walled Z-section members, which I did not find in the investigated 
literatures. As the results of the experimental tests I determined the failure modes and the 
resistances of single and double Z-section members and Z-section members with trapezoidal 
sheeting lateral restraint, respectively. Special load introduction to the web is applied for the 
tests which has no standardized design resistance calculation. The new results are the failure 
modes and test based design resistances of this type of structural members. 

I worked out a shell finite element model of the compressed Z-section members and I 
carried out numerical simulations on imperfect model including material and geometrical 
nonlinearities in the model. The equivalent geometrical imperfections are defined on the bases 
of the eigenmodes of the members. The experiences of finite element modeling shows that it 
is hard to classify the eigenmodes of a shell finite element model into the basic instability 
modes – local, distortional and global buckling – due to the presence of interacted modes. I 
worked out an algorithm which can classify the complex eigenmodes of a shell finite element 
models based on the deformation of the cross-section nodes along the member. The 
eigenmodes of a shell finite element model under compression can be classified on the basis 
of the constrained Finite Strip Method. I carried out a parametric study on C- and Z-section 
members with various discretization and boundary conditions and I proved that the method is 
applicable to classify the eigenmodes of FE models. 

I carried out an imperfection sensitivity analysis to determine the effect of various buckling 
modes as equivalent geometrical imperfection to the ultimate load and the failure mode of the 
shell finite element model. The experiences are used illustratively in the modeling of 
experimental tests of compressed Z-section members. Complex geometrical imperfections are 
used in nonlinear simulations which are able to follow the behaviour of the experimental tests. 
I concluded the necessary imperfections to model the behaviour of compressed Z-section 
members. 

In the next phase, I designed and executed an experimental test program on the joints of a 
continuous Z-purlin system. Three various details are analysed: (i) end of overlap for bending 
moment and shear force interaction, (ii) overlap support for bending moment and transverse 
force interaction and (iii) end support for transverse force. The overlap design resistance and 
the overlap stiffness can be determined by experimental tests only according to the proposal 
of the Eurocode 3. In my research, I determined the test based design resistances of the 
various details, and based on the results I determined the bending moment – shear force 
interaction curves for the end of overlap region. In case of overlap support tests, I proved that 
the standard design method is applicable for this type of structural details. Based on the end 
support test results, I proposed modification of the transverse force design resistance of the 
standard.  

In the next phase of the research, I designed and completed an experimental test program 
on anti-sag elements of cold-formed thin-walled roof system. Various sag channels, peak 
elements and flying sag systems with tie rods are tested. The behaviour and the test based 
design resistances are derived from the tests. Shell finite element model of the sag channel is 
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developed and the necessary equivalent geometrical imperfections for nonlinear simulations 
are determined and calibrated to ensure same behaviour modes and ultimate load of the tests. 

Based on my experimental and numerical research results I developed the bases and the 
algorithm of a complex design method of cold-formed thin-walled roof systems. The 
algorithm – called PurlinFED – can build the shell finite element model of a roof system: 
complex models with trapezoidal sheeting and supplementary cladding systems; control the 
analysis and evaluate the results. Three design methods are built in the algorithm that 
combines the results of beam and shell models at various analysis levels. The nonlinear 
simulation based design method is verified by full-scale experimental tests. 

In the frame of the research, I executed altogether 180 experimental tests. I determined the 
test based design resistances for all cases and for end of overlap and end support I proposed 
the modification of the design resistance calculation. In all cases shell finite element models 
are developed and nonlinear analyses are carried out on imperfect models, where the 
imperfection size and distribution are determined on the basis of the experimental tests.  
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1. Introduction  
The very close competition between the steel fabricators accelerates the continuous 

development of structural systems and design methods in the field of civil engineering. The 
cost of the secondary structural elements and the cladding system can be significant in the 
total price of an industrial type building; it can be reach the half of the total cost. So the 
development of roof and wall systems can affect remarkable savings to the steel fabricator. In 
my PhD dissertation I summarize my experimental and numerical research work on the fields 
of cold-formed thin-walled roof systems, which is inspired and supported by the industrial 
partners of the Department of Structural Engineering, BME. 

The main components of an industrial type building are shown in Figure 1 and are as 
follows: 

(i)  the main frame which are typically produced by tapered welded I- or hot rolled 
section; 

(ii)  the secondary structural elements, usually cold-formed thin-walled Z/C-purlins and 
wall beams;  

(iii)  the cladding systems such as trapezoidal sheeting or floating panels and  
(iv)  supplementary elements such as anti-sag bars and flying sag systems.  
Figure 1 shows a typical roof system: overlapped purlins with trapezoidal sheeting and 

anti-sag bars. 
In my dissertation I introduce the structural problems of: 
(i)  compressed cold-formed thin-walled members, concentrated on Z- and C-section 

members in Chapter 2;  
(ii)  continuous Z-purlins in Chapter 3 and  
(iii)  supplementary elements of the roof system in Chapter 4. 
The previous studies on these fields are reviewed and summarized by publications (and 

personal contacts with the main researchers of these topics) at the beginning of each chapter. 
Afterwards, the conclusions of previous studies are drawn and my applied research strategy – 
which leads to the new scientific results – is presented.  

The structural problems are analysed in all cases by experimental tests:  
(i)  tests on compressed Z-section members in single and double arrangement and with or 

without trapezoidal sheeting; 
(ii)  overlap support, end of overlap, and end support details and  
(iii)  supplementary elements of roof systems such as various types of sag channels, peak 

elements and flying sag systems. 
The experimental tests are evaluated, the behaviour modes and the test based design 

resistances are derived and new design methods are proposed. 
Shell finite element models are built for all experimental tests and various analyses are 

carried out. The dissertation deals with the question of the classification of buckling modes by 
analysis of shell FE eigenmodes. As a summary of the research an algorithm and a computer 
program is developed, which is able to build, analyse and evaluate FE models of a whole roof 
system (Chapter 5). 

Finally the new scientific results are summarized in Chapter 6. 
In the introduction I emphasize the previous Hungarian studies on this field. The first book 

was published in 1965 by Csellár, Halász and Réti [1]. The book summarizes the fabrication 
technology, basic stability principals, design methods, connections and application. 
Experimental test are carried out on special Z-sections at the Department of Steel Structures 
of TU Budapest in 1983, and theoretical investigations are derived by P. Tomka in [2]. The 
research of thin-walled structures is extended by B. Verőci in [3] and [4] where experimental 
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tests and design methods are introduced for trapezoidal sheetings. By the spread of cold-
formed thin-walled fabricators and products in Hungary a group of PhD students of L. Dunai 
[5] continued the research in this field.  

 
 
 

 
 

Figure 1. Typical cold-formed thin-walled roof system 
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2. Z/C cold-formed thin-walled members in compression 

2.1 Introduction 

2.1.1. Structural problems 

The secondary structural elements – Z-purlins – carry surface loads from the roof such as 
self-weight or snow load and axial forces from the following effects: 

- wind load on the end wall, 
- compressed members of the wind bracing system, 
- lateral support of the main frame, 
- in plane forces of the roof from earthquake effect. 

The usual structural arrangements of purlins and the presence of axial force leads to the 
following questions on the behaviour modes: 

- local, distortional and global stability behaviour of compressed Z-section, 
- interaction of compressed Z-section members and cladding system, 
- local stability behaviour of the overlapped zones under compression. 

The buckling modes of cold-formed thin-walled members (local, distortional and global) 
are usually demonstrated on C-sections which are widely used as a compressed member in 
light-gauge systems. In my research the focus is on Z-sections. 

2.1.2. Previous studies 

The behaviour modes of compressed cold-formed thin-walled members are widely 
analysed by both theoretical and experimental studies. According to the prevalent usage of 
compressed C-sections, its behaviour is deeply analysed comparing to the compressed Z-
sections. Hardly any publications can be found in the literature on experimental analysis of Z-
sections; [6] is focusing on the local buckling of the web only.  

The buckling modes of cold-formed thin-walled members are the local, distortional and 
global modes as shown in Figure 2. These modes can be analysed by Generalized Beam 
Theory (GBT) [7], by Finite Strip Method (FSM) [8] or by Finite Element Method (FEM or 
FE). Figure 2 illustrates the result of a Finite Strip analysis. The horizontal axis represents the 
half-wavelength of the buckling of the member of its components while the vertical axis 
represents the critical load factors. The local minimums of the curves correspond to the local, 
distortional and global buckling modes. The distortional mode of Z-sections is described by 
GBT in [11], [12] to predict the critical stress. The GBT can handle only various end support 
conditions; while the FSM method is only able to take into consideration the rotational 
support of the cladding along the member and the end boundary conditions are pinned-pinned. 
The pure buckling modes are rarely occurs in a structural member, however an interacted 
mode decomposition can be determined in constrained Finite Strip Method (cFSM) [13], [14], 
[15], [16] and [8]. 

Both special end support conditions and partial or full rotational restraints can be handled 
in various analysis levels by the FE method [17]. The eigenmodes and eigenvalues of a 
member can be calculated by linear instability analysis; furthermore the behaviour can be 
followed by full nonlinear (material and geometrical) analysis on imperfect models. As one of 
the main questions in a nonlinear simulation there are several methods in the literature to 
define the real geometrical imperfections and the residual stresses of various thin-walled 
members: C-section in [18], and for Σ -profile in [19]. The measured data are applied on finite 
element models, the effect of distortional type imperfections is analysed in [20] for C-sections. 
The interaction modes on the behaviour of rack sections are predicted in [21]. 
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Design method for compressed thin-walled members is included in European 
and Australian [63] standards. The Eurocode supports the application of finite 

sistance calculation in case of plated structures [61]
formed thin-walled members, especially the application of

is an open question. 

Local, distortional and global buckling modes of Z-section under compression

Conclusions on previous studies 

On the basis of existing research studies the following conclusions can be drawn: 
analytical solution can be found in the literature for various buckling modes by 

solution methods, 
in nonlinear finite element models the key point is the adaptation of imperfection, 
however there is no consensus exists on the distribution and the magnitude to be 

In the investigated literature I did not find:  
s of compressed Z-section, 

behaviour modes of laterally supported Z-section members for compression,
nalysis on the behaviour modes of the overlapped zone of Z

 
finite element model, which can follow the behaviour mo
simulation of compressed Z-section, 
geometrical imperfections are based on measured data, however it is more evident 
to apply the eigenmodes of the structures as equivalent geometrical
where equivalent geometrical imperfection means that all type of imperfections are 
replaced by geometrical imperfections that effect the same behaviour and ultimate 

Purpose and research strategy 

The aim of the current research is to identify the behaviour modes of compressed Z

various buckling modes of single and double section, 
laterally supported section on one flange by trapezoidal sheeting,
compression test of the overlapped zone. 

The test program and the test results are presented in Chapter 2.2. 

distortional 

global

Length [mm] 

walled members is included in European [60], 
the application of finite 

[61] but there is no 
walled members, especially the application of 

 

under compression 

On the basis of existing research studies the following conclusions can be drawn:  
analytical solution can be found in the literature for various buckling modes by 

in nonlinear finite element models the key point is the adaptation of imperfection, 
however there is no consensus exists on the distribution and the magnitude to be 

members for compression, 
is on the behaviour modes of the overlapped zone of Z-purlins 

finite element model, which can follow the behaviour modes by nonlinear 

geometrical imperfections are based on measured data, however it is more evident 
equivalent geometrical imperfection, 

n means that all type of imperfections are 
replaced by geometrical imperfections that effect the same behaviour and ultimate 

The aim of the current research is to identify the behaviour modes of compressed Z-section 

laterally supported section on one flange by trapezoidal sheeting, 

global 



-  13 - 
 
 
 
 

Shell finite element model is developed which can follow the experienced behaviour 
modes. This model requires sensitivity analysis on various types of imperfections with 
different amplitudes based on the eigenmodes of the structure. The eigenmodes usually 
consists of interaction of pure buckling modes which cannot be identified by any methods in 
the literature. This fact inspired the research on the classification of the eigenmodes by finite 
element model.  

The first classification method is based on geometrical definition (visual observation) of 
the pure buckling modes in Chapter 2.4. After the classification the effect of the different 
modes on the behaviour of the model are checked by parametric studies and the results are 
illustrated by the experimental tests (Chapter 2.5). The results showed the importance of the 
buckling mode shape imperfection in case of shell finite elements, so another method is 
proposed for buckling mode identification. 

The second part of the research is based on constrained Finite Strip Method (cFSM) [13] 
developed by S. Ádány, where the interacted modes are decomposed as the linear 
combination of pure modes created in cFSM. A parametric study is carried out on C-section 
to analyse the accuracy of the proposed method in Chapter 2.6 and the method is applied on 
Z-section members. 

2.2 Experimental tests 
An experimental research program is completed on cold-formed Z-section compressed 

members in the Structural Laboratory of the Department of Structural Engineering of BME. 
The main purposes of the research are to investigate the different stability phenomena and to 
determine the test based design resistances under such conditions, which are not handled by 
standard methods. In the experimental program 24 specimens are studied having different 
lengths and supporting conditions. The obtained stability phenomena are the interaction of 
local, distortional and global buckling modes. The results are evaluated in details; the 
behaviour modes are identified and characterised, and the design resistances of the specimens 
are determined for practical application purpose. The test documentation can be found in [23]. 

2.2.1. Design of specimens  

The experimental study aimed to investigate Z-section compressed members with special 
conditions, which cannot be handled by standard design procedures. These are related to the 
non-typical arrangement of the sections, the type of load introduction, and the structural 
solutions of the lateral supports. The general purpose of the research is to analyse the complex 
and interaction stability phenomena under such conditions. The more specific purpose is to 
find the test based design resistances of the structural solutions for practical applications. The 
specimens and the test program are designed on these purposes. 

The specimens are fabricated from Lindab Z 150 and 200 profiles. The geometry of the 
specimens is as follows: length: 800, 2000 and 3600 mm; cross-section height: 150 and 200 
mm; thickness: 1.0 and 2.0 mm. Both single- and double-profile-specimens are investigated, 
and overlap arrangements are also tested. The end supports are prepared by web gussets 
without warping restraint. The specimens are tested without lateral and with one-sided lateral 
supports (trapezoidal sheeting, LTP45/0.5). 

The test specimens are designed on the bases of the investigation of the local, distortional 
and global stability phenomena. The preliminary buckling analysis is done by finite strip 
method [66] using the above detailed geometrical data and supporting requirements. 

The results of the instability analysis (buckling modes, critical load factors) of the Z-
sections with different lengths are illustrated in Figure 2. The main geometrical data of the 
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test specimens – global lengths, plate b/t ratios – are derived from the results of the instability 
analysis and supplementary standard checking [60]. 

2.2.2. Test specimens  

The details of the 24 Z-section test specimens are summarized in Table 1. The Z-sections 
are fabricated with different width of flanges in order to combine and connect them together. 
The double Z-section members are arranged in an “overlap” position. No bolts are used to 
connect the two Z-section members to each other. The lateral supports are applied only on one 
flange of the members. The gusset plate type end supports are connected to the webs of the 
members by self-drilling screws; the numbers of the screws are determined according to the 
predicted ultimate load.  

Table 1. Test specimens 

Specimen # Profile Thickness Length [mm] Section Lateral support 
Z01 Z200 2.0 

800 

single - 
Z02 Z150 1.0 single  - 
Z03 Z200 1.0 single - 
Z04 Z200 2.0 double - 
Z05 Z150 1.0 double - 
Z06 Z200 1.0 double - 
Z07 Z200 2.0 single trapezoidal sheeting 
Z08 Z150 1.0 single trapezoidal sheeting 
Z09 Z200 1.0 single trapezoidal sheeting 
Z10 Z200 2.0 double trapezoidal sheeting 
Z11 Z150 1.0 double trapezoidal sheeting 
Z12 Z200 1.0 double trapezoidal sheeting 
Z13 Z200 2.0 

2000 

single - 
Z14 Z150 1.0 single - 
Z15 Z200 1.0 single - 
Z16 Z200 2.0 single trapezoidal sheeting 
Z17 Z150 1.0 single trapezoidal sheeting 
Z18 Z200 1.0 single trapezoidal sheeting 
Z19 Z200 2.0 

3600 

single - 
Z20 Z150 1.0 single - 
Z21 Z200 1.0 single - 
Z22 Z200 2.0 single trapezoidal sheeting 
Z23 Z150 1.0 single trapezoidal sheeting 
Z24 Z200 1.0 single trapezoidal sheeting 

2.2.3. Test arrangement  

The specimens are tested in vertical position in a loading frame, as it is shown in Figure 3. 
The load is introduced at the lower end of the specimens by a hydraulic system, through a 
vertically driven horizontal plate. The gusset plate supports at the lower end of the members 
are connected to this loading plate, as shown in Figure 4. The lateral supports (trapezoidal 
sheets) are connected to one side of the tested profile and to the columns of the loading frame, 
as illustrated in Figure 3. 

The load, the shortening of the specimen and the horizontal displacements in the middle of 
the specimens are recorded continuously. The measured horizontal displacements are shown 
in Figure 5.  
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Figure 3. Test setup: (a) global test arrangement and (b) lateral supports by trapezoidal 
sheet on Z-section specimen 

   

Figure 4. Load introduction: gusset plate and self-drilling screws 

  

Figure 5. Measuring the displacements in the middle of the specimen 

2.2.4. Typical behaviour modes 

The typical – local, distortional and global – behaviour modes of single Z-section 
specimens are illustrated in Figure 6. Figure 7 shows the pertinent load – shortening 
relationships. In the behaviour the local plate buckling of the Z-section web always appeared 
in the elastic range. Other local phenomenon is the crushing of web near to the load 
introduction (Figure 6a) in cases of short specimens and when effective lateral supports are 
applied in longer specimens. 

(a) (b) 



 
 
 
 

Figure 6. Behaviour modes: (a) l

Figure 7.

The most typical experimental behaviour is the distortional buckling of the laterally 
unsupported flange of the Z-
generally caused by the developing of a yield mechanism in the most bent position. The 
interaction of distortional buckling and web crushing is experienced when the buckling of the 
free flange is happened near to the ends
the cases of laterally unsupported, longer specimens. Despite the cross
(Z-section with different sizes of flanges
buckling modes are obtained beside the flexural

The measured load and shortening curves show the typical features of the limit 
stability behaviour. The rigidity changing 
plate buckling of the webs. In case of double sections the 
after the crushing of the first member there are resid
of the second member (Z06 on 

2.2.5. Experimental behaviour

The observed behaviour modes and the measured ultimate loads of Z
are collected in Table 2.  
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Behaviour modes: (a) local web crushing (Z01), (b) distortional buckling (Z1
and (c) global buckling (Z13) 

Figure 7. Load – shortening relationships 

The most typical experimental behaviour is the distortional buckling of the laterally 
-section (Figure 6b and Z16 on Figure 7). The final failure is 

generally caused by the developing of a yield mechanism in the most bent position. The 
interaction of distortional buckling and web crushing is experienced when the buckling of the 

d near to the ends (Z01 on Figure 7). The global buckling is observed in 
the cases of laterally unsupported, longer specimens. Despite the cross-section arrangement 

with different sizes of flanges), almost pure torsional (Figure 6c) and pure flexural 
are obtained beside the flexural-torsional modes (Z13 on Figure 7

The measured load and shortening curves show the typical features of the limit 
stability behaviour. The rigidity changing after the linear part represents the effect of the local 

In case of double sections the two members fail separately and 
after the crushing of the first member there are residual load bearing capacity until the failure 

(Z06 on Figure 7). 

ehaviour and ultimate loads 

The observed behaviour modes and the measured ultimate loads of Z

(b) (c) 

local 

global 

distortional 

double section 

 

distortional buckling (Z16) 

 

The most typical experimental behaviour is the distortional buckling of the laterally 
). The final failure is 

generally caused by the developing of a yield mechanism in the most bent position. The 
interaction of distortional buckling and web crushing is experienced when the buckling of the 

. The global buckling is observed in 
section arrangement 
c) and pure flexural 

Figure 7).  
The measured load and shortening curves show the typical features of the limit point type 

the effect of the local 
two members fail separately and 

ual load bearing capacity until the failure 

The observed behaviour modes and the measured ultimate loads of Z-section specimens 
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Table 2. Experimental behaviour, ultimate load and design resistances 

Test 
code 

Behaviour mode (failure location) 
Ultimate 

load 
[kN] 

Design 
resistance 

[kN] 

Z01 
Crushing of the web (at the lower and upper ends, near to the 

screwed connection) 
95.32 65.29 

Z02 
Interaction of distortional buckling and crushing of the web 

(at the lower and upper ends, near to the screwed 
connection) 

22.56 18.27 

Z03 
Interaction of distortional buckling and crushing of the web 

(at the lower and upper ends in the screwed connection) 
14.19 11.50 

Z04 Distortional buckling (in the middle of the specimen) 190.82 130.71 
Z05 Distortional buckling (in the middle of the specimen) 42.39 34.34 
Z06 Distortional buckling (near to the lower end) 48.41 39.21 

Z07 
Distortional buckling of the free flange (in the middle of the 

specimen) 
95.32 65.29 

Z08 
Distortional buckling of the free flange (near to the lower 

end) 
22.98 18.62 

Z09 
Interaction of distortional buckling of the free flange and 

crushing of the web (near to the lower end) 
20.82 16.87 

Z10 
Distortional buckling of the free flange (in the middle of the 

specimen) 
184.80 126.59 

Z11 
Distortional buckling of the free flange (in the middle of the 

specimen) 
45.97 37.23 

Z12 
Distortional buckling of the free flange (near to the upper 

end) 
53.02 42.94 

Z13 Torsional buckling (in the middle of the specimen) 85.26 45.42 
Z14 Flexural-torsional buckling (in the middle of the specimen) 16.17 10.19 
Z15 Flexural-torsional buckling (in the middle of the specimen) 20.92 13.18 

Z16 
Distortional buckling of the free flange (in the lower part of 

the specimen and near to the lower end) 
100.49 68.83 

Z17 
Distortional buckling of the free flange (in the lower part of 

the specimen) 
20.16 16.33 

Z18 
Interaction of distortional buckling of the free flange and 
crushing of the web (at the lower end, near to the screwed 

connection) 
27.03 21.89 

Z19 Torsional buckling (near to the middle of the specimen) 68.10 36.28 

Z20 
Flexural buckling in the plane perpendicular to the web (in 

the middle of the specimen) 
10.67 6.72 

Z21 
Crushing of the web (at the upper end in the screwed 

connection) 
19.36 12.20 

Z22 
Distortional buckling of the free flange (in the lower part of 

the specimen and near to the lower end) 
95.13 65.16 

Z23 
Interaction of distortional buckling of the free flange and 

crushing of the web (near to the lower end) 
19.90 16.12 

Z24 
Int. of distortional buckling of the free flange and crushing 

of the web (at the lower end in the screwed connection) 
22.10 17.90 

 



 
 
 
 

It is noted, that the local, elastic plate buckling is experienced in the webs of all the 
specimens; this is not mentioned in the table in general, unless it has essential effect in the 
failure phenomenon. The detailed behaviour mode gives the stability phenomena which
characterise the performance until the limit point; after the type and place of experienced 
failure is enclosed for all the specimens.

The measured ultimate loads are detailed for sing
lateral supports in Figure 8. 

Figure 8 shows that in the case of lower web b/t ratio (Z 200/2, Z150/1) 
behaviour – the typical column 
b/t ratio is increased (Z 200/1) the local behaviour plays important role, keeping the ultimate 
load almost independent of the length of the 
when lateral supports are used on one flange of the Z
behaviour is governed by the distortional mode and the interaction of the distortional and 
local modes resulting in the above findings. 

Figure 8. Ultimate loads in 

2.2.6. Material tests 

Tensile tests are carried out on specimens cut 
web. There were three different sections
9; altogether 26 tests are done.
profile, in Table 4 for the Z200/1 profile and in

If the measured stress-strain curves 

in other cases the yield stress is defined as the stress corresponds to the 0.2
and marked as 

p0.2R . 

Figure 9. 
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characterise the performance until the limit point; after the type and place of experienced 
failure is enclosed for all the specimens. 

mate loads are detailed for single Z-section specimens without and with 

that in the case of lower web b/t ratio (Z 200/2, Z150/1) 
the typical column buckling curve points are obtained from the tests. When web

b/t ratio is increased (Z 200/1) the local behaviour plays important role, keeping the ultimate 
load almost independent of the length of the member. Similar tendencies are experienced 
when lateral supports are used on one flange of the Z-section member. I
behaviour is governed by the distortional mode and the interaction of the distortional and 
local modes resulting in the above findings.  

ltimate loads in Z-section specimens: (a) without and (b) with 

nsile tests are carried out on specimens cut out from each different Z-
different sections, and 6 or 10 specimens are tested according to 

tests are done. The test results are summarized in Table 3
0/1 profile and in Table 5 for the Z150/1 profile

strain curves have significant plato the yield stress is marked as 

in other cases the yield stress is defined as the stress corresponds to the 0.2

 

Tensile specimens’ location in the cross-sections

    2  1 

8 
7 
6 
5 
4 
3 

   32 31 

   40  39 

38 
37 
36 
35 
34 
33 

Z200/1 

  51 

  56 

55 
54 
53 
52 

Z150/1 

that the local, elastic plate buckling is experienced in the webs of all the 
specimens; this is not mentioned in the table in general, unless it has essential effect in the 
failure phenomenon. The detailed behaviour mode gives the stability phenomena which 
characterise the performance until the limit point; after the type and place of experienced 

specimens without and with 

that in the case of lower web b/t ratio (Z 200/2, Z150/1) – due to the global 
curve points are obtained from the tests. When web 

b/t ratio is increased (Z 200/1) the local behaviour plays important role, keeping the ultimate 
. Similar tendencies are experienced 

. In those cases the 
behaviour is governed by the distortional mode and the interaction of the distortional and 

 

and (b) with lateral supports 

-section flanges and 
according to Figure 

Table 3 for the Z200/2 
0/1 profile. 

yield stress is marked as 
eHR , 

in other cases the yield stress is defined as the stress corresponds to the 0.2% residual strain 

 

sections 



-  19 - 
 
 
 
 

Table 3. Material test results of Z200/2 section 

Material test 
specimen 

The specimen Yield stress Ultimate Ultimate 
thickness width Rp0.2 ReH stress strain 

[mm] [N/mm2] [N/mm2] [%] 
1 2.04 20.5 419.6 - 481.46 10.7 
2 2.04 20.2 421.2 - 484.90 10.5 
3 2.04 20.1 381.7 - 490.30 10.5 
4 2.04 20.1 420.4 - 487.06 11.1 
5 2.04 20.0 427.5 - 490.75 11.2 
6 2.04 20.0 423.7 - 489.75 10.2 
7 2.04 20.1 420.1 - 487.31 11.7 
8 2.04 20.1 426.8 - 490.30 10.5 
9 2.04 20.0 426.7 - 489.25 11.5 
10 2.04 19.9 430.9 - 490.95 11.8 

 

Table 4. Material test results of Z200/1 section 

Material test 
specimen 

The specimen Yield stress Ultimate Ultimate 
thickness width Rp0.2 ReH stress strain 

[mm] [N/mm2] [N/mm2] [%] 
31 1.03 19.8 353.5 - 417.68 13.6 
32 1.03 20.0 352.3 - 415.00 13.5 
33 1.03 19.8 357.3 - 418.69 13.2 
34 1.03 20.1 349.9 - 411.44 12.6 
35 1.03 20.0 348.8 - 414.50 12.6 
36 1.03 19.9 349.1 - 417.59 13.8 
37 1.03 20.0 352.2 - 416.00 13.8 
38 1.03 19.9 355.0 - 419.10 12.8 
39 1.03 20.1 352.7 - 415.92 13.1 
40 1.03 20.0 347.7 - 414.50 12.3 

 

Table 5. Material test results of Z150/1 section 

Material test 
specimen 

The specimen Yield stress Ultimate Ultimate 
thickness width Rp0.2 ReH stress strain 

[mm] [N/mm2] [N/mm2] [%] 
51 1.05 20.3 340.8 - 413.79 14.1 
52 1.05 20.2 337.5 - 414.85 13.0 
53 1.05 20.3 349.6 - 411.33 13.0 
54 1.05 20.4 346.6 - 409.31 13.1 
55 1.05 20.4 345.6 - 406.86 14.4 
56 1.05 20.4 340.8 - 404.41 14.1 

 
The yield stress distribution of the various sections is shown in Figure 10. The measured 

values of the yield stress show hardly any hardening effect around the edges of the cross 
section. It can be explained by the fact that the specimens are cut out away from the edges due 
to the round corners. The maximum deviation from the average yield stress is 5%. 
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Figure 10. Yield stress distribution on the sections: (a) Z200/2, (b) Z200/1 and (c) Z150/1 

2.2.7. Test based design resistances 

The results of each test series are evaluated to define the standard design resistances 
according to the Eurocode 3 [60]. 

The standard design resistance can be calculated from one measured values as follows:  
The measured test result is obsR . 

The adjusted value is: 

 Robsadj / µRR =  (1)  

where 
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obsyb,f   is the measured yield stress, 

ybf   is the nominal yield stress ( 2
yb N/mm 355=f ), 

corobs,t   is the measured value of the core material thickness, 

cort    is the nominal core material thickness, 

1=α   if obsyb,f > ybf , 

1=β   if corobs,t ≤ cort , other cases can be found in [60]. 

The characteristic value of the resistance is: 

 adjkk 9.0 RR ××= η  (3)  

The observed failure is yielding failure so 9.0k =η  is applied and 7.0k =η  is used for 
overall instability failure. The design value is calculated as: 

 
M

k
sysd γ

η R
R ×=  (4)  

1sys =η  because the test conditions followed the applied solution, 

1M =γ  the partial factor (according to Eurocode [59]). 

(a) 

(c) 

420 N/mm2 

350 N/mm2 

340 N/mm2 

lip flange web flange lip 

lip flange web flange lip 

lip flange web flange lip 

(b) 



-  21 - 
 
 
 
 

2.2.8. Conclusions on the design resistances 

The test based design resistances are shown in Table 2. The design resistances follow the 
tendencies presented in Figure 8 due to the similar reduction in the test based design 
procedure. The conclusion of this research is the new behaviour modes of compressed Z-
section members in various structural arrangements and the test based design resistances. 

The results of the 800 mm members showed that the largest design resistance corresponds 
to the smallest web height/thickness ratio (100) and the design resistance decreasing by 
almost to 25% by increasing the web height/thickness ratio to 150 and 200. The design 
resistances of the 150 and 200 web height/thickness ratio are close to each other due to the 1 
mm thickness in both cases. This proves that the thickness plays major role in the resistance. 
The design resistance of the double section is almost doubled. The tests of short elements with 
trapezoidal sheeting showed that it has no effect on the resistance due to the local failure 
mode. In case of 2000 mm length members where global failure is occurred the design 
resistance is increasing by 50% if trapezoidal sheeting is applied. Same tendencies can be 
observed on the results of the 3600 mm members. In both cases significant differences can be 
observed for the various plate thicknesses for global failure modes as well. The results of 1 
mm thickness elements are close to each other while the resistance of the 2 mm thickness 
element is significantly higher. 

2.3 Finite element modeling of compressed Z-section members 

2.3.1. Introduction 

In parallel with the experimental study a numerical model is developed by Ansys [64] 
finite element program using shell elements. The basis of the research is the experimental 
program on compressed Z-section members presented in Chapter 2.2, however a general 
method is worked out that is able to classify the eigenmodes of a shell finite element model.  

It is well known that taking into consideration of geometric imperfections in modeling has 
primary importance in case of numerical simulations of thin-walled steel members. One 
possible method for modeling of geometrical imperfection is to apply the result of buckling 
analysis in the geometric model of the structure with the typical local, distortional and global 
buckling modes. Other suggestions can be found in [18], where measured geometric 
imperfections are applied as Fourier series and in [20] where eigenmodes by amplitudes of 
measured imperfections are applied in numerical models. 

If the member consists of thin plates, such as cold-formed steel products or as in many 
welded applications, not only global buckling (e.g. flexural or flexural-torsional), but also 
local and distortional buckling, as well as various interacted buckling modes, may play major 
role in the ultimate behaviour of the member and therefore in the design philosophy, 
respectively. If local buckling occurs in a structural member it has post critical reserve while 
in case of distortional and global buckling there is no reserve. The analysis of these 
instabilities by numerical methods requires the consideration of more degrees of freedom than 
in classical analytical solutions. 

Due to the advances of computational technology, and due to its infiltration into the 
everyday engineering life, the handling of various buckling modes can be done in the analysis, 
as far as the calculation of buckling modes and the associated critical forces are concerned. 
Several finite element codes are available, most of them having various shell or solid 
elements that are necessary to perform the buckling analysis with the required accuracy. The 
new facilities, however, bring new problems. An important one is that while shell finite 
element is an excellent tool for the calculation of buckling modes/forces, it produces a large 
number of buckling modes most of which are apparently interacted. Thus, it is the user who 
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has to manually identify those modes where the interaction seems to be weak, since the “pure” 
modes are the ones on which the classical design approaches are based. Therefore, an 
automatic buckling mode identification method would be certainly appreciated.  

Two general numerical methods are developed which can recognize and classify the 
eigenmodes of thin-walled members. The first method based on the visual observation of the 
shell FE eigenmodes. The proposed method analyses the nodal displacements, the number of 
half-waves along the member of the buckling shape and the maximum deformation. This 
method is detailed in Chapter 2.4. The other method developed by S. Ádány is based on the 
approximation of the FE eigenmodes by the base functions of the Finite Strip Method. The 
participation of the pure modes in the shell FE eigenmodes are also obtained by the 
classification method. The details and the results of a parametric study are presented in 
Chapter 2.6. 

The local, distortional and global buckling modes and their interactions classified by the 
automatic recognition method are applied as the distribution functions of equivalent 
geometrical imperfections for the numerical models. On the imperfect model nonlinear 
numerical simulations are carried out to analyse the stiffness, the failure mode and the 
ultimate load. By the application of the method a parametric study is completed. The results 
are used to predict the geometric imperfections of Z-section compressed members to apply it 
in numerical analysis (Chapter 2.5). 

2.3.2. Finite element model 

For the purpose of automatic generation of imperfect finite element models a research 
target program is developed. This tool – called “PurlinFED” – can build finite element shell 
models for Ansys program, and it can evaluate the results automatically of various analyses 
such as linear, buckling or nonlinear. The program is presented in Chapter 5. 

The developed finite element models are corresponding to the Z-section test specimens: the 
web is divided into 12, the flanges into 4 and the lips into 2 elements. The model restraints 
follow the structural solution of the actual support conditions applied by gusset plate and self-
drilling screws in the experimental program. Fix boundary conditions are applied at the centre 
of self-drilling screws. For linear and instability analysis concentrated forces are applied at the 
restrained nodes and kinematic load is used for nonlinear analysis. The mesh and the end 
detail of a single Z-section model are shown in Figure 11a. The FE model of purlin restrained 
by trapezoidal sheeting is shown in Figure 11b. 

 

Figure 11. FE model: (a) mesh and support model, (b) purlin with trapezoidal sheeting 

2.3.3. Analysis 

In the first step instability analysis is carried out on the finite element model to calculate 
the eigenmodes of the compressed Z-section members. These eigenmodes and eigenvalues 

(a) (b) 
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can be used in standard based design to calculate the pertinent slenderness ratios, or can be 
used for the prediction of geometric imperfections for numerical simulations. In this research 
a method is developed to get imperfect model for numerical simulation using the classified 
buckling modes. Geometrical and material nonlinear analyses are carried out on imperfect 
models of the Z-section members. An increased intensity of the measured ultimate loads  of 
the experimental tests is applied to the FE model and this load is divided at least 10 equal load 
steps. In some cases smaller load steps are applied for higher numerical accuracy. In each load 
step maximum 15 iterations are used to satisfy the equilibrium. The equilibrium in one load 
step is reached, when the Euclidian norm of the unbalanced forces is smaller or equal than 
0.1%. If convergence is not reached by the 15 iterations the solution is continued by a reduced 
load step. The minimum load step is defined as 1% of the first load step. If the analysis cannot 
find solution by the reduced load step, the calculation stops. This load will be the ultimate 
load if the non-convergence is not caused by numerical instability of the model. In the 
nonlinear analyses the measured material properties are used which are obtained from tension 
tests. 

2.4 Identification of FE buckling modes by automatic recognition method 

2.4.1. Introduction 

The results of shell FE instability analysis are usually contain interacting buckling modes. 
The most common evaluation of these modes is the visual observation where the decision of 
the classification – if it can made at all – highly dependent on the experience of the engineer. 
In the proposed method, an automatic recognition algorithm takes out the visual observation. 
The algorithm collects and arranges the nodal displacements in representative cross section 
points along the member, and by the analysis of ordered data classifies the eigenmodes into 
pure buckling modes.  

2.4.2. Buckling modes 

The typical pure local, distortional and global buckling modes of the numerical models are 
illustrated in Figure 12 in case of Z-section compressed members. 

 

Figure 12. Buckling modes of numerical model: (a) local, (b) distortional and (c) global 

The first task in the proposed procedure is to define the possible pure buckling modes of a 
structural element (in this case Z-section compressed members). The local modes are the 
buckling of the lip, the flange or the web, as it is illustrated in Figure 13a. The distortional 
buckling modes are shown in Figure 13b, where the buckling of a flange or a flange with the 
web can be observed. The global buckling mode is flexural-torsional buckling. Due to the 
applied geometry of the section, however, the experienced global behaviour can be defined as 
presented in Figure 13c, such as flexural buckling around the axes parallel or orthogonal to 
the web of the section or torsional buckling. In this research these modes are handled as “pure” 
global modes. 

(c) (a) (b) 



 
 
 
 

Figure 13. Definition of 
analysed edges and 

2.4.3. Buckling shape recognition

To be able to recognize and classify buckling modes automa
developed which is built in the PurlinFED program

13 edge deformations of the Z
database along the member in every node and for every 
waves, the maximum and minimum values of the deformation and the co
extreme values are determined. 

According to these ordered numerical data and preliminary ana
ratios of the maximum edge deformations can be 
buckling modes. These ratios can be used to classify the eigenmodes into the pure buckling 
modes independently of each other so the inte
there are other modes, where 
this proposed method can be classified properly. These approximate ratios and classification 
conditions can be defined according to local, distortional or global buckling modes. 

The number of half-waves at the 1st, 4th, 7th, 10th and 
maximum deformation to the deformation of the whole member can describe the condition of 
local buckling. By the application of these conditions the local buckling modes, including 
web crushing or crippling can be excluded. 

The evaluation and recognition program windows in PurlinFED are shown in 
and Figure 15. The presented deformations of the edges are marked with red arrow. 
local buckling the deformation line of the middle of the web 
Figure 14a.  

The four distortional buckling 
edge pairs: 3-5, 6-8, 8-6 and 9
deformations of these pairs the distortional buckling modes can be recognized. Bot
and upper flange distortional buckling can be seen in 

In case of global buckling the two flexural
analysis of the difference between the deformations of edge pairs 6
conditions are required for the ratio of the maximum deformation of these edge pairs and the 
maximum deformation of the 
torsional buckling; only the deformations of 6th and 8th ed
Flexural-torsional buckling can also be recognized if the two deformations are not equal (
deformation values are between the 
modes are illustrated in Figure 15

(a) 

(b) 
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-  24 - 

 

Definition of (a) local, (b) distortional, (c) global buckling modes
ed edges and directions of nodal displacements of the cross

Buckling shape recognition 

To be able to recognize and classify buckling modes automatically the followi
developed which is built in the PurlinFED program, detailed in Chapter 5.  

13 edge deformations of the Z-section – shown in Figure 13d – are collected into a 
along the member in every node and for every eigenmode. The number of half

waves, the maximum and minimum values of the deformation and the co
extreme values are determined.  

According to these ordered numerical data and preliminary analysis of the eigenmodes, 
edge deformations can be obtained by the analysis of large number of 

. These ratios can be used to classify the eigenmodes into the pure buckling 
modes independently of each other so the interacted modes also can be recognized. 

 a complex interacted eigenmode neither by visual check nor by 
this proposed method can be classified properly. These approximate ratios and classification 

ccording to local, distortional or global buckling modes. 
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maximum deformation to the deformation of the whole member can describe the condition of 
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evaluation and recognition program windows in PurlinFED are shown in 

The presented deformations of the edges are marked with red arrow. 
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The four distortional buckling modes can be recognized by the analysis of four different 
6 and 9-11, according to Figure 13b. By the differences in the 

deformations of these pairs the distortional buckling modes can be recognized. Bot
and upper flange distortional buckling can be seen in Figure 14b.  

e of global buckling the two flexural buckling modes can be identified by the 
analysis of the difference between the deformations of edge pairs 6-8 and 5
conditions are required for the ratio of the maximum deformation of these edge pairs and the 
maximum deformation of the whole member. The procedure is almost the same in case of 
torsional buckling; only the deformations of 6th and 8th edges have to ha

torsional buckling can also be recognized if the two deformations are not equal (
between the flexural and the torsional modes). The global buckling 
Figure 15. 
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Figure 14. Deformations of the edges: (a) local and (b) distortional 

 

Figure 15. Global deformations of the edges: (a) flexural-torsional and (b) torsional 

2.4.4. Imperfection generation 

In the current study the first 100 buckling eigenmodes of the Z-section compressed 
members are calculated and analysed by the proposed method. In the first step the local, 
distortional and global buckling modes are determined; the maximum deformations and the 
positions of waves are calculated. In the next step the mesh of the numerical model is updated 
by one of the selected pure buckling shape as the distribution function of the geometrical 
imperfection. A constant multiplier is used to resize the normalized buckling shape 
deformations to get a specific sized imperfection. Furthermore on the imperfect numerical 
model nonlinear simulation is carried out. After the analysis of imperfections on the bases of 
pure buckling shapes, combined buckling modes are also applied as imperfections. In these 
cases two or more buckling shapes are selected and applied by various multipliers to result in 
multiple geometric imperfections. The results are detailed in Chapter 2.5. 

The principals of the method can be extended to analyse other types of thin-walled sections, 
under different loading condition [24], too. 

2.5 Parametric studies on various imperfections 
The method, detailed in Chapter 2.4 is applied for the imperfection sensitivity analysis of 

Z-section compressed members. The effect of local, distortional and global type of 
imperfections are analysed on three various lengths (800, 2000 and 3600 mm) of a selected Z-
section from the experimental tests with web height of 200 mm and thickness of 2.0 mm. 

(a) (b) 

(a) (b) 



 
 
 
 

2.5.1. Effect of local imperfections

Buckling shapes according to 
proposed deformations of [18]
deformations according to local buckling modes, as it can be seen in 

In Table 6 the calculated ultimate loads of the virtual experiments are pr
with the differences compared to the perfect numerical model.

The ultimate behaviour of the perfect and the imperfect numerical models are described by 
the force – shortening diagram in
effect on both the initial stiffness of the member and on the ultimate load. The imperfection 
sensitivity relationship is almost linear (see 
maximum decreasing is 5% in the case of 2 mm web imperfection.

Figure 16. Force – displacement diagram of 

b) 

a) 
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Effect of local imperfections 

Buckling shapes according to Figure 14 are applied in each case with the maximum 
[18] and [20]. In these cases the imperfections contains only local 

deformations according to local buckling modes, as it can be seen in Table 6
the calculated ultimate loads of the virtual experiments are pr

with the differences compared to the perfect numerical model. 
of the perfect and the imperfect numerical models are described by 

shortening diagram in Figure 16. As it can be seen the local imperfections have 
effect on both the initial stiffness of the member and on the ultimate load. The imperfection 

is almost linear (see Figure 17) in case of the three lengths, the 
decreasing is 5% in the case of 2 mm web imperfection. 

displacement diagram of the (a) 800 mm and  the
Z200/2.0 element 

are applied in each case with the maximum 
e cases the imperfections contains only local 

Table 6. 
the calculated ultimate loads of the virtual experiments are presented together 

of the perfect and the imperfect numerical models are described by 
seen the local imperfections have 

effect on both the initial stiffness of the member and on the ultimate load. The imperfection 
) in case of the three lengths, the 

 

 

the (b)3600 mm 



 
 
 
 

Figure 17. Ultimate load [%] 

 

Table 6.

 

2.5.2. Effect of distortional imperfections

Distortional imperfections are applied by the magnitude detailed in 
these cases the distortional buckling shape contains local imperfections
increase of the ultimate load.
significant, between 1-3% and together with the local imperfections the increase can be 7%
This phenomenon calls the attention 

 
 

Section 
Length 
[mm] 

local

Max. deformation [mm]

Z200/2 

800 

- 
2.00
1.18
0.20

2000 

- 
2.00
1.18
0.20

3600 

- 
2.00
1.18
0.20

e
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ltimate load [%] – local web imperfection [mm] relationship

Table 6. Applied local imperfections 

Effect of distortional imperfections 

Distortional imperfections are applied by the magnitude detailed in Table 7
these cases the distortional buckling shape contains local imperfections, too, 
increase of the ultimate load. Table 7 shows that the reduction in the ultimate load is not 

nd together with the local imperfections the increase can be 7%
the attention on the importance of distinction of the buckling modes.

Imperfection type 
Type 
and 

mark 

Ultimate 
load [kN]

local distortional global 

Max. deformation [mm] 

 - - perfect 120.99
2.00 - - e0.L1 114.40
1.18 - - e0.L2 116.45
0.20 - - e0.L3 118.55

 - - perfect 108.62
2.00 - - e0.L1 104.50
1.18 - - e0.L2 106.26
0.20 - - e0.L3 108.27

 - - perfect 85.34
2.00 - - e0.L1 81.25
1.18 - - e0.L2 82.91
0.20 - - e0.L3 84.94

e0.L1=web thickness=2 mm,  
e0.L2=0.006×web height=1.188 mm, 

e0.L3=web thickness/10=0.2 mm 

 

relationship 

Table 7. Note, that in 
too, that explains the 

in the ultimate load is not 
nd together with the local imperfections the increase can be 7%. 

the importance of distinction of the buckling modes. 

Ultimate 
load [kN] 

Ratio to 
the 

perfect 
model 
[%] 

120.99 100.00 
114.40 94.55 
116.45 96.25 
118.55 97.98 
108.62 100.00 
104.50 96.21 
106.26 97.83 
108.27 99.68 
85.34 100.00 
81.25 95.21 
82.91 97.15 
84.94 99.53 



 
 
 
 

Table 7.

Section 
Length 
[mm] 

Imperfection type
local* 

Max

Z200/2 

800 
- 

4.04 
0.40 

2000 
- 

4.44 
0.44 

3600 
- 

4.40 
0.44 

* these imperfections are included in the
 
Difference can be found in the ultimate b

is the same, however, the yield mechanism 
different positions, according to the places of maximum imperfection, as illustrated in 
18c. In case of shorter element this effect is not dominant.

Figure 18. Force – displacement diagram of 
element and 

a) 

b) 
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Table 7. Applied distortional imperfections 

Imperfection type Type 
and 

mark 

Ultimate 
load [kN]

 distortional global 
Max. deformation [mm] 

- - perfect 120.99
 2.00 - e0.D1 117.33
 0.20 - e0.D2 118.62

- - perfect 108.62
 2.00 - e0.D1 116.09
 0.20 - e0.D2 108.26

- - perfect 85.34
 2.00 - e0.D1 82.85
 0.20 - e0.D2 85.23

e0.D1=web thickness=2 mm, 
 e0.D2=web thickness/10=0.2 mm 

* these imperfections are included in the distortional mode

Difference can be found in the ultimate behaviour, as Figure 18 shows. The initial stiffness 
yield mechanism appears at different deformation level and 

ng to the places of maximum imperfection, as illustrated in 
. In case of shorter element this effect is not dominant. 

displacement diagram of (a) an 800 mm and (b) a 3600 mm Z200/2.0 
and (c) the places of failure in 3600 mm element

Ultimate 
oad [kN] 

Ratio to the 
perfect 

model [%] 
120.99 100.00 
117.33 96.97 
118.62 98.04 
108.62 100.00 
116.09 106.88 
108.26 99.67 
85.34 100.00 
82.85 97.09 
85.23 99.87 

distortional mode 

shows. The initial stiffness 
appears at different deformation level and 

ng to the places of maximum imperfection, as illustrated in Figure 

 

 

a 3600 mm Z200/2.0 
element 

c) 

failure: 
yield 

mechanism 
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2.5.3. Effect of global imperfections 

Two types of global imperfections are analysed. In case of the 2000 and 3600 mm member 
the imperfections are according to Figure 15 flexural and torsional buckling mode, as it is 
detailed in Table 8. In case of 800 mm column, two torsional imperfections are applied by 
torsion in two opposite directions, clockwise and counter-clockwise. In these cases the 
imperfect geometry contains both local and distortional imperfections beyond the global 
imperfection, with the maximum deformations detailed in Table 8. 

There are differences in the obtained ultimate behaviour in the stiffness of the member, the 
ultimate load and the post-buckling behaviour, too, as it can be seen in Figure 19 (perfect 
model is signed by solid line). The ultimate load of imperfect member can be higher than the 
perfect case, if the applied imperfection does not correspond to the failure mode, see the 2000 
mm element in Table 8. In that case the minimum deformation where the yield mechanism 
can be occurred is not in the same place where the maximum deformation of the global 
buckling is. This phenomenon results higher resistance. If the imperfection corresponds to the 
experienced failure in the test program the reduction in the ultimate load is around 10%. 

 

Table 8. Applied global imperfections 

Section 
Length 
[mm] 

Imperfection type 
Type 

Ultimate 
load 
[kN] 

Ratio to 
the perfect 
model [%] 

local* distortional* global 
Max. deformation [mm] 

Z200/2 

800 

- - - perfect 120.99 100.00 
1.17 0.99 4.00 e0.G1=4 mm tors. 110.95 91.70 

0.39 0.33 1.33 
e0.G2=1.33 mm 

tors. 
112.99 93.39 

1.32 1.11 4.00 e0.G1=4 mm tors. 106.96 88.40 

0.44 0.37 1.33 
e0.G2=1.33 mm 

tors. 
114.16 94.35 

2000 

- - - perfect 108.62 100.00 

15.90 6.28 10.00 
e0.G1=10 mm 

flex. 
107.17 98.67 

5.30 2.09 3.33 
e0.G2=3.33 mm 

flex. 
106.60 98.14 

2.48 7.08 10.00 
e0.G1=10 mm 

tors. 
116.36 107.13 

0.83 2.36 3.33 
e0.G2=3.33 mm 

tors. 
110.05 101.32 

3600 

- - - perfect 85.34 100.00 

17.65 1.02 18.00 
e0.G1=18 mm 

flex. 
86.87 101.56 

5.88 0.34 6.00 e0.G2=6 mm flex. 85.11 99.73 

3.55 10.42 18.00 
e0.G1=18 mm 

tors. 
79.49 93.15 

1.18 3.47 6.00 e0.G2=6 mm tors. 83.44 97.78 
e0.G1=l / 200,  
e0:G2=l/600 

* these imperfections are included in the global mode 
 



 
 
 
 

 

Figure 19. Force – displacement diagram of 

2.5.4. Illustrative example of the tests

The combination of imperfections is illustrated in the comparison of the measured and 
calculated nonlinear behaviour
imperfections are applied, as follows: local with 2 mm, 
imperfection with 9 mm maximum deformations. The applied imperfections are 
the experimentally measured force 
laboratory and calculated virtual test failure modes are the same

Further study is concentrated on the extension of the virtual tests to the full test program.

Figure 20. Force – displacement diagram of Z1

a) 

b) 
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displacement diagram of (a) an 800 mm and (b) a 3600 mm Z200/2.0 
element with global imperfections 

e example of the tests 

The combination of imperfections is illustrated in the comparison of the measured and 
ehaviour of Z13 and Z19 test specimens. In the numerical model three 

imperfections are applied, as follows: local with 2 mm, distortional with 2 mm and global 
imperfection with 9 mm maximum deformations. The applied imperfections are 
the experimentally measured force – displacement diagram in Figure 20

virtual test failure modes are the same, as shown in 
Further study is concentrated on the extension of the virtual tests to the full test program.

displacement diagram of Z19 tests and virtual experimen

 

 

a 3600 mm Z200/2.0 

The combination of imperfections is illustrated in the comparison of the measured and 
of Z13 and Z19 test specimens. In the numerical model three 

distortional with 2 mm and global 
imperfection with 9 mm maximum deformations. The applied imperfections are compared to 

Figure 20. The observed 
, as shown in Figure 21. 

Further study is concentrated on the extension of the virtual tests to the full test program. 

 

9 tests and virtual experiments 
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Figure 21. Failure of the (a) Z13 specimen and (b) the numerical model 

2.6 Identification of FE buckling modes of thin-walled elements by using cFSM base 
functions 

2.6.1. Introduction 

A second possible approach to the FE buckling mode classification is presented in this 
chapter. The approach uses a system of modal base functions of Finite Strip Method (FSM) 
that has been recently proposed by S. Ádány [13], [14].  

There are differences between the FE method and FSM disretization of a structural element. 
The FE method discretizes the model in the cross-section and along the member. The 
deformation and other parameters are calculated by local base functions of the FE method. 
The FSM uses local base function in the cross-section only while trigonometric (in this 
research sinusoidal) functions along the member. This type of discretization determines the 
limited application of the FSM method; however the pure buckling modes of a pinned-pinned 
thin-walled prismatic member can be generated. Furthermore these pure modes are available 
with various half-wavelength.  

Mathematically, the proposed base functions are derived by an appropriate transformation 
of the regular finite strip base functions, by introducing a transformation matrix referred to as 
a constraint matrix. The definition of the constraint matrix is based on simple mechanical 
criteria, which ensures that the resulted modal base functions will be able to separate the 
global, distortional and local buckling modes. In other words the proposed functions can be 
regarded as possible deformation modes of global, distortional or local buckling. These modal 
base functions then are used to approximate displacements calculated by a shell-element 
based finite element buckling analysis, which provides approximate mode identification.  

In this chapter the method is explained on a compressed C-section, and parametric studies 
are carried out and the most efficient parameters (cross-section discretization and number of 
half-wavelength) are applied on Z-section members.  

2.6.2. Modal base functions 

The modal base functions for all the typical buckling mode classes (global, distortional, 
local and other) are presented, which then can be used to approximately describe 

a) b) 
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displacement functions calculated by a regular finite element analysis. Determination of the 
modal base functions is in accordance with [13], [14], and can be generated by the following 
steps: (i) a displacement field identical to the one used in Finite Strip Method (FSM) is 
assumed, (ii) the characteristic buckling mode classes are defined by mechanical criteria, (iii) 
the mechanical criteria are implemented to separate the general FSM displacement field, and 
(iv) the resulting base system is orthogonalized and normalized. The base functions can be 
interpreted as vectors for matrix operations.  

For the analysed member it is assumed that: (i) the analysed member is a column or a beam, 
(ii) the member is prismatic, (iii) it is supported by two hinges at its ends, (iv) it is loaded by a 
compressive force (uniformly distributed along the cross-section), (v) its material is linearly 
elastic, and (vi) it is free from imperfections (residual stresses, initial deformations, material 
inhomogenities, etc.). The applied global and local coordinate systems and displacements are 
illustrated in Figure 22. 

 

Figure 22. Coordinates, displacements of the FSM base functions [28] 

2.6.3. Definition of buckling modes 

In the literature and design standards for thin-walled members, it is common to distinguish 
three characteristic classes of buckling: global, distortional and local. Though there seems to 
be an agreement on the existence of these mode classes, there is no widely agreed upon 
definitions for these modes. It is also to mention that there evidently exist modes which 
neither can be categorized into any of the above three classes nor can be regarded as 
interaction of these three classes: these modes will be referred simply as other modes and 
include membrane shear and transverse extension. 

Given the lack of commonly adopted mode definition, the one proposed by S. Ádány is 
applied here [13], [14]. Note this definition can be regarded as equivalent to the one which is 
implicitly used in Generalized Beam Theory (GBT), see [9], [10]. The separation between 
global (G), distortional (D), local (L) and other (O) deformation modes can be completed by 
the application of three mechanical criteria. Table 9 shows the criteria that must be satisfied 
by the different mode classes [13]. 

Criterion 1: (a) 0xy =γ , i.e. there are no in-plane shear strains, (b) 0y =ε , i.e. there is no 

transverse extensions, and (c) v is linear in x within a flat part. 
Criterion 2: (a) 0≠ν , i.e. the warping displacement is not constantly equal to zero along 

the whole cross-section, and (b) the cross-section is in transverse equilibrium. 
Criterion 3: 0xx =κ , i.e. there is no transverse flexure. 

Table 9. Mode definition in cFSM [13] 

 G modes D modes L modes O modes 
Criterion 1 Yes Yes Yes No 
Criterion 2 Yes Yes No - 
Criterion 3 Yes No - - 



 
 
 
 

2.6.4. FSM assumptions 

As it shown in [11], the above mechanical criteria can systematically be applied within the
FSM, as it is implemented in the CUFSM software 
mathematical derivations, which finally lead to a base system where the various deformation 
classes are separated from each other. Since th
application of appropriate constraints that enforce deformations according to the given criteria, 
this version of FSM is also termed the constrained FSM, or cFSM.

Since the above mechanical criteria are implemented 
FSM are reflected in the resulted base functions/vectors. The implied assumptions can be 
summarized as follows: (i) the member is modeled by 2D surface elements, (ii) in
(membrane) and out-of-plane (plate bending) def
behaviour a classical 2D stress state membrane is considered, (iv) for the out
behaviour a classical Kirchoff plate is considered, (v) longitudinal displacement distribution is 
assumed in trigonometric form (sine
approximated by cubic polynomials, (vii) the displacement functions are expressed as the 
product of nodal displacements (collected in 
[8]. 

2.6.5.  cFSM base functions 

The above mechanical criteria for mode definition unambiguously define sub
original FSM displacement field, (also referred as G, D
spaces are typically multi-dimensional, and therefore various systems of base functions (that 
are represented by vectors of nodal displacements, referred simply as base vectors) are 
possible. Since our aim here is to linearly combine the base functions to approximate FE 
displacement functions, it is highly advisable to use an orthogonal base system as much as 
possible. Given the desired deformations a fully orthogonal system does not exist, but 
orthogonalization within each (G,
can be performed in multiple ways, here one motivated by GBT is followed: the eigenvalue 
problem is solved for each sub
modes) will be used as orthogonal functions. The resulting modes are presen
for C-shape cross-section and in 
in basic accordance with the ones used in GBT and (ii) though base functions from diffe
sub-spaces are not fully orthogonal, they are nearly orthogonal.

 

 
G1 G

 
L1 L

Figure 23. Base functions of C
modes (displaced/deformed cross
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, the above mechanical criteria can systematically be applied within the
FSM, as it is implemented in the CUFSM software [66]. The application requires lengthy 
mathematical derivations, which finally lead to a base system where the various deformation 
classes are separated from each other. Since this separation can also be interpreted as 
application of appropriate constraints that enforce deformations according to the given criteria, 
this version of FSM is also termed the constrained FSM, or cFSM. 

Since the above mechanical criteria are implemented in FSM, the basic assumptions of 
FSM are reflected in the resulted base functions/vectors. The implied assumptions can be 
summarized as follows: (i) the member is modeled by 2D surface elements, (ii) in

plane (plate bending) deformations are allowed, (iii) for the in
a classical 2D stress state membrane is considered, (iv) for the out

a classical Kirchoff plate is considered, (v) longitudinal displacement distribution is 
form (sine-cosine), (vi) the transverse displacement functions are 

approximated by cubic polynomials, (vii) the displacement functions are expressed as the 
product of nodal displacements (collected in nodal displacement vectors) and shape functions

 

The above mechanical criteria for mode definition unambiguously define sub
original FSM displacement field, (also referred as G, D, L and O spaces), however, these 

mensional, and therefore various systems of base functions (that 
are represented by vectors of nodal displacements, referred simply as base vectors) are 
possible. Since our aim here is to linearly combine the base functions to approximate FE 

unctions, it is highly advisable to use an orthogonal base system as much as 
possible. Given the desired deformations a fully orthogonal system does not exist, but 
orthogonalization within each (G, D, L, O) sub-space is possible. Though orthogonalization 
an be performed in multiple ways, here one motivated by GBT is followed: the eigenvalue 

problem is solved for each sub-space one by one, and the resulting eigenmodes
modes) will be used as orthogonal functions. The resulting modes are presen

section and in Figure 24 for Z-shape cross-section. Note, (i) the modes are 
in basic accordance with the ones used in GBT and (ii) though base functions from diffe

spaces are not fully orthogonal, they are nearly orthogonal. 

    
G2 G3 G4 D1 D2

    
L2 L3 L4 L5 L6

Base functions of C-section: four global, two distortional and 
modes (displaced/deformed cross-sections) 

, the above mechanical criteria can systematically be applied within the 
. The application requires lengthy 

mathematical derivations, which finally lead to a base system where the various deformation 
is separation can also be interpreted as 

application of appropriate constraints that enforce deformations according to the given criteria, 

in FSM, the basic assumptions of 
FSM are reflected in the resulted base functions/vectors. The implied assumptions can be 
summarized as follows: (i) the member is modeled by 2D surface elements, (ii) in-plane 

ormations are allowed, (iii) for the in-plane 
a classical 2D stress state membrane is considered, (iv) for the out-of-plane 

a classical Kirchoff plate is considered, (v) longitudinal displacement distribution is 
cosine), (vi) the transverse displacement functions are 

approximated by cubic polynomials, (vii) the displacement functions are expressed as the 
displacement vectors) and shape functions 

The above mechanical criteria for mode definition unambiguously define sub-spaces of the 
L and O spaces), however, these 

mensional, and therefore various systems of base functions (that 
are represented by vectors of nodal displacements, referred simply as base vectors) are 
possible. Since our aim here is to linearly combine the base functions to approximate FE 

unctions, it is highly advisable to use an orthogonal base system as much as 
possible. Given the desired deformations a fully orthogonal system does not exist, but 

space is possible. Though orthogonalization 
an be performed in multiple ways, here one motivated by GBT is followed: the eigenvalue 

by one, and the resulting eigenmodes (i.e. buckling 
modes) will be used as orthogonal functions. The resulting modes are presented in Figure 23 

Note, (i) the modes are 
in basic accordance with the ones used in GBT and (ii) though base functions from different 
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Figure 24. Base functions of Z
modes (displaced/deformed cross

 
Any FSM displacement function, thus buckling modes too, can be writte

forms: 

 transvδ =

where L is the member length, 

and longitδ  denotes (symbolically)

respectively, tCS,δ  and wCS,δ  stand for cross

respectively. It is to be observed that (i) the above functions correspond
free to warp boundary conditions, (ii) transverse displacements have maximum values in the 
middle of the beam, and (iii) longitudinal displacement has its maximum value at the beam 
ends.  

As it is proved in [16] the number of cross
on the number of strips or nodes, and for an open unbranched cross
follows: G-modes: 4, =CSGn , D

modes: 22, ×+×= nsnmn CSO

the corners) and ns is the number of sub
nodes. 

As Eq. (5) suggests the total number of base functions depends also on the longitudinal 
shape function, namely: the m
arbitrarily be selected. Practically, the number is limited to a certain 

reasonable accuracy for the approximation, and consider

means that the total number of base functions considered for 

max, mnn CSMM ×= , where subscript M stands for G, D, L or O. Considering that the 

displacement functions that are to be approximated come from a finite element analysis, they 
are strongly dependent on the applied discretization. This
sine half-wavelength should be comparable to the size of the applied finite elements.

2.6.6. Normalization 

A fundamental feature of eigen
normalizations are possible. 
normalized in a vector sense (taking advantage that displacement functions are expressed as 
the product of displacement vectors and shape functions). 
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2 G3 G4 D1 

    
2 L3 L4 L5 

Base functions of Z-section: four global, two distortional and 
modes (displaced/deformed cross-sections) 

Any FSM displacement function, thus buckling modes too, can be writte

L

ym
tCS

πδ sin,=  and 
L

ym
wCSlongit

πδδ cos,=  

is the member length, m is the number of half-sine-waves considered, while

denotes (symbolically) the transverse and longitudinal displacement function, 

stand for cross-section transverse and warping displacements, 

respectively. It is to be observed that (i) the above functions correspond to pinned
free to warp boundary conditions, (ii) transverse displacements have maximum values in the 
middle of the beam, and (iii) longitudinal displacement has its maximum value at the beam 

the number of cross-section deformed configurations is dependent 
on the number of strips or nodes, and for an open unbranched cross-section it can be given as 

, D-modes: 4, −= nmn CSD , L-modes: , =n CSL

2−ns , where nm is the number of main cross

is the number of sub-nodes (or intermediate nodes) located between main 

suggests the total number of base functions depends also on the longitudinal 
m number of half-sine-waves considered. Theoretically, 

cted. Practically, the number is limited to a certain m

reasonable accuracy for the approximation, and considers the wave lengths 

means that the total number of base functions considered for a given mode is: 
, where subscript M stands for G, D, L or O. Considering that the 

displacement functions that are to be approximated come from a finite element analysis, they 
are strongly dependent on the applied discretization. This suggests that the shortest considered 

wavelength should be comparable to the size of the applied finite elements.

A fundamental feature of eigenmodes is that they can be normalized arbitrarily. Various 
normalizations are possible. Here the simplest is used, the displacement vectors are 
normalized in a vector sense (taking advantage that displacement functions are expressed as 
the product of displacement vectors and shape functions).  

 
D2 

 
L6 

global, two distortional and first six local 

Any FSM displacement function, thus buckling modes too, can be written in the following 

(5)  

waves considered, while transvδ  

the transverse and longitudinal displacement function, 

section transverse and warping displacements, 

to pinned-pinned and 
free to warp boundary conditions, (ii) transverse displacements have maximum values in the 
middle of the beam, and (iii) longitudinal displacement has its maximum value at the beam 

section deformed configurations is dependent 
section it can be given as 

22 +×+ nsnm , O-

is the number of main cross-section nodes (at 

nodes (or intermediate nodes) located between main 

suggests the total number of base functions depends also on the longitudinal 
waves considered. Theoretically, m can 

maxm  which provides 

lengths max...1 mm = . This 

a given mode is: 
, where subscript M stands for G, D, L or O. Considering that the 

displacement functions that are to be approximated come from a finite element analysis, they 
suggests that the shortest considered 

wavelength should be comparable to the size of the applied finite elements. 

is that they can be normalized arbitrarily. Various 
Here the simplest is used, the displacement vectors are 

normalized in a vector sense (taking advantage that displacement functions are expressed as 
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 1=φφT  (6)  

where ϕ  is a base vector. Though this normalization is not perfect (e.g. it is dependent on 
the applied discretization, the effect of rotations is under-represented, etc.) similar 
normalization is used in GBT [10] and cFSM [8] with reasonable results. 

2.6.7. Approximation of FE displacements 

Once the ϕ  cFSM base functions are known, it is possible to approximate any FEδ  FE 
displacement function as a linear combination of the cFSM base functions. The error in this 
approximation may be expressed as follows: 

 ∑−= ϕδδ cFEerr  (7)  

where ∑ ϕc  denotes (symbolically) the linear combination. Following the logic used in 
normalization of the base functions, the minimization will be completed on the error vector 
(instead of error function), by minimizing the vector norm as follows. 

 ( ) ( )ΦcdΦcddd FE
T

FEerr
T

err −−=min  (8)  

where Φ  is the matrix of orthonormal cFSM base vectors and c  is the vector of unknown 
combination factors. Expanding Eq. (8), the function to be minimized may be expressed as: 

 ΦcΦccdΦddc TT
FE

T
FE

T
FE +−= 2)(min f  (9)  

which leads to a linear system of equations to be solved for c : 

 FE
TT dΦΦcΦ

c
c =→=

∂
∂

0
)(f

 (10)  

After calculating the combination factors (elements of c ), ip  participation of an individual 

buckling mode (or base function) can be calculated. Moreover, taking advantage that within 
the base functions the various buckling classes (i.e. global, distortional or local) are separated, 
the Mp  participation of a class can be expressed as follows: 

 ∑∑∑ =→=
allMall

iiMiii ccpccp  (11)  

where ic  is an element of c  vector, while the M denotes that summation should be 

performed over all elements of a given mode class. 
Once the FE displacement function is expressed by cFSM base functions, the error of 

approximation can conveniently be measured as the norm of the error vector relative to the 
norm of the displacement vector (i.e., a “normalized” version of the norm of the error vector) 

 
FE

T
FEerr

T
err dddd=err  (12)  

2.6.8. Numerical studies on the proposed method 

To illustrate the application and capabilities of the proposed identification method, a 
parametric study is completed on a symmetric lipped channel compressed C-section member. 
The member length is 1200 mm, the cross-section dimensions are as follows: web height is 
100 mm, flange width is 60 mm, lip length is 10 mm, thickness is 2 mm, and the lips are 
perpendicular to flanges. (Note, the dimensions are for the mid-line, and sharp corners are 
employed.) Steel material is assumed with a Young’s modulus of 210 000 MPa and Poisson’s 
ratio of 0.3. For loading, a uniformly distributed concentric force is applied. 

The FE calculations are conducted in Ansys [64], using 4-node, 24-DOF’s shell elements 
in a regular (rectangular) mesh, as shown in Figure 25a. The longitudinal dimension of the 



 
 
 
 

finite elements is constant along the member length, and is defined so that the aspect ratio of 
all the shell elements is close to 1.

In the numerical studies presented herein the following parameters 
cross-section discretization, (ii) minimal wave
boundary conditions. 

Figure 25. FE model (a) 
condition

Four different cross-section discretizations are used, denoted by the numbers of sub
within the flanges, web and lips, respectively. For example, 2
nodes in each of the flanges, 4 in the web, and 1
or 15 elements in the cross-section. The considered cases are: 1
as shown in Figure 25b. The number of cross
sectional degrees of freedom (DOF

Theoretically, the longitudinal distribution of the cFSM base functions can be an arbitrary 
number of sine half-waves. Practically, the maximum half
obviously equal to the member length, while the minimal half
least be small enough to allow local buckling to develop) is considered as a parameter, 
expressed as the ratio of the minimal half
the presented study the following parameters are applied: 1×, 2
smallest cFSM wave-length, hence, the largest number of considered cFSM base functions.)  

Finally, five boundary conditions (BC) are investigated. In the case of ‘FSM’ boundary 
conditions, the nodes at the supports are restric
longitudinal warping is left free. (Note, this BC exactly corresponds to FSM with a single 
half-wave along the length; for multiple half
other boundary conditions include ‘GF
end restraints, ‘GF-LF’ which corresponds to both globally and locally fixed condition, while 
in case of ‘LW’ and ‘LF’ options only either the web or the flanges are globally fixed and 
locally pinned (i.e., restrained against translations but free to rotate). The 
conditions are shown in Figure 26
Figure 25. 
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finite elements is constant along the member length, and is defined so that the aspect ratio of 
all the shell elements is close to 1. 
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condition and (b) cross-section discretization 

section discretizations are used, denoted by the numbers of sub
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Figure 26.

In the analysed cases the first 50 FE
modes where the buckling load is smaller than 

The accuracy of the cFSM approximation is measured by means of the error d
(12). Then, two more general indicators are determined: (i) the average error of the first n 
cases (n=1..50), and (ii) the number of cases (among the 50) with an error >5%. These two 
indicators have been applied to compare the various discretizations, boundary conditions, etc.

Results for selected modes are presented in
well as the calculated error are given for 8 FE buckling modes, calculat
restraints, 3-5-1 cross-section discretization and option 3× for the cFSM minimal wave
It is to be noted that option 3× means maximum 21 half
(along the member length). The corresponding deforme
both FE solutions and their cFSM approximations are shown. It can be seen there are modes 
the approximation of which are excellent, as both the deformed shapes and small errors show 
(e.g. modes #1, #5, #13, #17 and #20). Also, the GDLO participations are in accordance with 
the engineering expectations: mode #1 is clearly global (flexural
distortional, #13 is local, while #5 or #19 are mixed local
also exist cases with significant errors marked by both the deformed shapes and error values. 
From the figures it is clear that both #18 and #20 are mixed local and distortional modes, but 
in neither case the cFSM approximation is not ab
even more evident in mode #24, which is clearly a local buckling with 24 longitudinal half
waves, therefore the applied maximum 21 longitudinal waves in the cFSM base functions are 
simply not enough to properly handle this buckling mode. 

Figure 28a shows the effect of FE mesh as well as of the minimal cFSM wave
clear that (i) finer cross-section discretization significantly enhances the accuracy of 
approximations, and (ii) higher modes tend to be approximated with larger errors. 
Considering that higher modes typically include buckling modes with smaller wave
can be conlcuded that in some cases th
displacements. It is obvious, however, that the required minimal mesh density highly depends 
on how many buckling modes are required to

GF-LP  
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Figure 26. Boundary conditions 

ed cases the first 50 FE buckling modes are calculated which covers those 
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Results for selected modes are presented in Table 10: the G, D, L and O participations as 
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Figure 27. cFSM approximation Φc  of FE eigenmodes and FEd  for FE modes [30] 

Figure 28b highlights the importance of the number of cFSM base functions considered: 
allowing for smaller wave-length base functions, the number of erroneous cases decreases, 
especially in the higher buckling modes where small wave-length-modes likely occur. The 
results suggest that the minimal wave-length of considered cFSM base functions should not 
be longer than that of the buckling wave-length of the modes to be identified.  

Table 10. GDLO participations in the selected modes 

FE mode 
number 

1 5 13 17 18 19 20 24 

G 85.9 % 0.5 % 0.2 % 1.3 % 1.1 % 0.6 % 1.1 % 3.3 % 
D 5.5 % 38.4 % 8.6 % 82.5 % 64.1 % 26.7 % 36.8 % 28.8 % 
L 0.2 % 58.2 % 88.7 % 12.7% 31.4 % 68.1 % 56.8 % 62.3 % 
O 8.4 % 2.9 % 2.5 % 3.5 % 3.4 % 4.6 % 5.4 % 5.5 % 

error 0.0 % 2.7 % 1.0 % 0.7 % 74.9 % 1.8 % 89.0 % 99.5 % 
 

mode 1 mode 5 mode 13 mode 17 

        
ΦΦΦΦc dFE ΦΦΦΦc dFE ΦΦΦΦc dFE ΦΦΦΦc dFE 

 
mode 18 mode 19 mode 20 mode 24 

        
ΦΦΦΦc dFE ΦΦΦΦc dFE ΦΦΦΦc dFE ΦΦΦΦc dFE 

 



 
 
 
 

 

Figure 28. Effect of (a) mesh density 

Figure 29. Results of various boundary conditions

Figure 29 shows that (i) mode identification works 
conditions, with the definite exception of LW option where only the web is supported, and (ii) 
minimal wave-length of cFSM base functions have significant 
be mentioned, however, that increasing the number of cFSM functions (by decreasing the 
minimal wave-length) may lead to “parasite” solutions: a relatively small error may be 
achieved while the identification is clearly unrea
the combination of LW and 1×

Finally, in Figure 30 the proposed approximate identification of the FE solution is 
compared with the cFSM solution itself (as implemented in CUFSM
with FSM-like boundary conditions, 3
employed. A buckling half-wavelength is manually assigned to each of the 50 modes: for 
some modes e.g. #1, #19 this is 
required and in some cases, no single half
dominant half-wavelengths predicted by the FE and the FSM models are nearly identical, see 
Figure 30a. Modal participation plot (
information contained in the FE models. In the FSM model only one buckling mode can exist 
at a given half-wavelength, but FE 
(e.g. mode #18), thus the modal participation shows some scatter about the traditional cFSM 
predictions. 
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mesh density and (b) minimal halfwave-length 
like boundary condition  

Results of various boundary conditions: (a) error and (b) mesh density 

shows that (i) mode identification works properly for various 
, with the definite exception of LW option where only the web is supported, and (ii) 

length of cFSM base functions have significant effect on the accuracy. It must 
be mentioned, however, that increasing the number of cFSM functions (by decreasing the 

length) may lead to “parasite” solutions: a relatively small error may be 
achieved while the identification is clearly unrealistic. This phenomenon occurs frequently in 
the combination of LW and 1×. 

the proposed approximate identification of the FE solution is 
compared with the cFSM solution itself (as implemented in CUFSM [8]

like boundary conditions, 3-5-1 discretization, and 3× minimum half
wavelength is manually assigned to each of the 50 modes: for 

some modes e.g. #1, #19 this is readily apparent, for other modes, e.g. #5, more judgment is 
required and in some cases, no single half-wavelength can be assigned. Buckling stresses and 

wavelengths predicted by the FE and the FSM models are nearly identical, see 
a. Modal participation plot (Figure 30b) highlights some of the additional 

information contained in the FE models. In the FSM model only one buckling mode can exist 
wavelength, but FE models may have different half-wavelengths superposed 

(e.g. mode #18), thus the modal participation shows some scatter about the traditional cFSM 

 

length in case of FSM-
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wavelength can be assigned. Buckling stresses and 

wavelengths predicted by the FE and the FSM models are nearly identical, see 
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wavelengths superposed 

(e.g. mode #18), thus the modal participation shows some scatter about the traditional cFSM 
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Figure 30. Comparison of (a) buckling stress and (b) mode participation as a function of 
half-wavelength [30] 

An arbitrary buckling mode of a thin-walled member predicted using a shell finite element 
model may be quantitatively identified in terms of global, distortional, local, or other 
deformations (mode classes) through the use of the approximate base vectors defined by the 
cFSM. Through a parametric study of a cold-formed steel lipped channel compressed member 
the resulting modal identification is shown to be excellent, even for modes with different 
wavelengths and cross-section deformations (e.g. local and distortional) superposed. 
Sensitivity to end restraints, finite element (FE) mesh discretization, and the minimum half-
wavelength employed for the cFSM base vectors is explored. FE mesh discretization must be 
fine enough, and the cFSM base vectors must employ a small enough half-wavelength, to 
adequately resolve the buckling deformations. The identification works with the least error for 
FSM-like (locally simply supported) boundary conditions, but can be applied to different end 
restraints, too.  

2.6.9. Application of the method on Z-section members 

The numerical studies on C-shaped cross sections proved the applicability of the proposed 
method for compressed C-sections. In this chapter the method is extended to Z-section 
members with the following specialties: unsymmetrical Z-section, axial force and bending 
moment and rotational spring support along the member. The examined cases are summarized 
in Table 11. Three member lengths are analysed: 800, 2000 and 3600 mm according to the 
test specimens in Chapter 2.2; the cross-section is Z200/2.0: web height is 200 mm, flange 
widths are 66 and 74 mm, lip lengths are 22.8 mm; thickness is 2 mm, and the lips are 
perpendicular to flanges. (Note, the dimensions are for the mid-line, and sharp corners are 
employed.) Steel material is assumed with a Young’s modulus of 210 000 MPa and Poisson’s 
ratio of 0.3. Two types of load are applied: a uniformly distributed compression stress at the 
end sections as concentric compression force and linearly distributed tension-compression 
stress as bending moment. 

Two cross-section discretizations are applied 3-5-1 and 2-4-1 (flange/web/lip) according to 
Figure 25. In the longitudinal direction various densities are tested. In the first step nearly 
square finite elements are used. The accuracy of the method can be increased by applying 
more elements along the member. The numerical examples contain cases where the number of 
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elements is doubled along the member. However, computational efficiency explains the 
necessity of less DOF’s which leads to the application of longer elements along the member. 

Table 11. Numerical example of Z-members 

Case 

Length N M 
Boundary 
condition 

Cross-section 
division 

(flange/web/lip) 

Number 
of 

elements 
long. 

Rotational 
spring 

[mm]   

1 800 Yes - FSM 3-5-1 52 - 
2 800 Yes - FSM 3-5-1 26 - 
3 800 Yes - LW 3-5-1 26 - 
4 800 - Yes FSM 3-5-1 26 - 
5 800 - Yes FSM 3-5-1 52 - 
6 800 - Yes FSM 3-5-1 78 - 
7 2000 Yes - FSM 3-5-1 66 - 
8 2000 Yes - FSM 2-4-1 108 - 
9 2000 - Yes FSM 3-5-1 66 - 
10 2000 - Yes FSM 2-4-1 108 - 
11 3600 Yes - FSM 3-5-1 118 - 
12 3600 - Yes FSM 2-4-1 54 - 
13 3600 - Yes FSM 2-4-1 54 Yes 

 
FSM-like and LW boundary conditions are applied as it is shown in Figure 31a, b. To 

model the restraining effect of trapezoidal sheeting as a usual application of the Z-purlins, 
rotational restraints at the web-flange intersection are applied (Figure 31c).  

In all cases the minimum half-wavelength of the base functions was two times longer of 
the actual finite element length. 

 

 

 

 

 

 

 

 

 

 

Figure 31. Supports: (a) FSM like, (b) constraints on web and (c) rotational restraints 

Using the above-described finite element models, the critical stresses and associated 
buckled shapes are calculated. The element numbers used in the models varied from 468-2124. 
Usually the first 100 modes are determined and several are selected for further analysis. These 
modes are shown in Figure 32-Figure 34 for member lengths 800, 2000 and 3600 mm. 

a) b) c) 
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Figure 32. Selected buckling modes of member length 800 mm (top: 3D view, bottom: 
cross-section deformation): modes 1, 11 of case 1,  mode 1 of cases 3 and 6 

 

 

Figure 33. Selected buckling modes of member length 2000 mm (top: 3D view, bottom: 
cross-section deformation): modes 1, 26, 28 of case 8 and modes 1, 2, 6 of case 9 

a) b) c) d) 

a) b) c) d) e) f) 
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Figure 34. Selected buckling modes of member length 2000 mm (top: 3D view, bottom: 
cross-section deformation): modes 1, 39, 50 of case 11 and mode 1 cases 12 and 13 

By visual inspection of the selected modes one could categorize them as follows. In case of 
800 mm member length seemingly local and distortional mode occurs for compression 
(Figure 32a, b). If supports are applied only on the web nodes the first buckling mode seems 
to be an interaction of local and distortional modes with high flange deformation at the ends 
(Figure 32c). The first buckling mode under bending moment is distortional (Figure 32d). The 
other modes which are not presented here are mainly local modes. 

In case of 2000 mm member length some selected modes are presented under compression 
(Figure 33a, b, c): local, distortional and flexural-torsional global buckling. Under bending 
moment the selected modes are seemingly distortional, lateral-torsional and local modes 
(Figure 33d, f, e). 

Flexural-torsional and torsional global modes and distortional modes occurs on 3600 mm 
length member under compression (Figure 34a, b, c). Two cases are analysed for bending 
moment. Figure 34d shows the first mode without rotational spring and Figure 34e shows the 
first mode with rotational spring at the tensioned web-flange intersection. The two modes 
seems to be identical, the critical load factor however is higher for the restrained member. 

Performing the mode participation calculation the contribution of G, D, L and O modes can 
be determined. The results are summarized in Table 12. 

The error of approximation is small in the selected cases and matches the preliminary 
expectations, which means that FSM base functions are able to approximate the analyzed Z-
section members with axial force, bending moment and rotational restraints with reasonable 
accuracy. Only those cases cannot be predicted where deformation occurs at the end sections 
due to the lack of restraint of the web or the flanges. As far as participations are concerned, it 
is interesting to notice that even the seemingly pure modes exhibits some coupling. 

 
 

a) b) c) d) e) 
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Table 12. Summary of the results 

Length 
[mm] 

Case Mode G [%] D [%] L [%] O [%] Error [%] 

800 

1 1 0.36 6.68 91.86 1.11 0.01 
1 11 6.08 79.79 10.65 3.49 0.00 
3 1 0.38 3.92 27.88 67.82 36.04 
6 1 1.04 93.43 3.28 2.24 0.01 

2000 

8 1 0.55 5.38 92.83 1.23 0.02 
8 26 6.08 74.91 14.13 4.88 0.01 
8 28 74.71 13.31 1.79 10.19 0.01 
9 1 1.03 90.62 4.04 4.31 0.01 
9 2 84.56 5.16 1.02 9.26 0.00 
9 6 0.69 6.82 91.28 1.21 0.38 

3600 

11 1 59.81 1.22 0.25 38.73 0.03 
11 39 27.35 0.65 0.37 71.64 0.09 
11 50 5.49 75.33 12.31 6.87 0.03 
12 1 90.74 0.43 0.09 8.74 0.00 
13 1 89.66 1.55 0.15 8.63 0.00 

 
Based on the results of C-and Z-section members it is proved that the FE buckling mode 

identification by cFSM base functions works for special conditions of thin-walled prismatic 
members, such as axial force, bending moment and rotational restraints along the member 
(effect of trapezoidal sheeting). 

The method is capable to distinguish the buckling modes of thin-walled members. As it 
shown in the previous chapter it is important if pure modes are applied as equivalent 
geometrical imperfections for nonlinear finite element modeling. The proposed method helps 
to choose between the interacted buckling modes.  

Other application of the method is if the design resistance of a thin-walled member is 
calculated by the Direct Strength Method (DSM) [22]. The basis of the DSM is the pure 
buckling modes which can be determined by Finite Strip Method or GBT. The proposed 
method extends the application of DSM by the analysis of more complex FE models such as 
discrete boundary conditions along the member or holes in the member that can not be 
modeled in FSM [31]. 

The further direction of the research is a development of a user friendly computer program 
which helps the application of this method.  
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3. Continuous purlins with overlap 

3.1 Introduction 

3.1.1. Structural problems 

From fabrication and design point of view an optimized solution for continuous purlin 
systems is that where the length of the purlin is not much higher than the bay space of a steel 
building and the system is prepared to contain elements with different thicknesses. In this 
structural arrangement the continuity of purlins is ensured by overlaps over the supporting 
frames.  

There are several structural details at the overlap but the common effect of different details 
is that the stiffness of the continuous system is disturbed. This means that the structural 
arrangement significantly effects the distribution of internal forces and deflections, 
respectively.  

Sample overlap zone is shown in Figure 35, where the various components are presented. 

 

Figure 35. Structural detail of overlap zone 

Due to the complex detail of the overlap the design resistance can be defined only by 
experimental tests according to Eurocode 3 [60], there is no design method to calculate the 
resistance of the overlap. A series of test is needed for checking (i) the end of overlap due to 
the different bending moment and shear force ratios, (ii) the middle of the overlap due to the 
different bending moment and transverse force ratios and (iii) the stiffness of the overlap. The 
last member of a continuous purlin at the end wall can also be critical for transverse force due 
to the lack of double section and continuity. 

End of overlap 
bolts between 
the two purlins 

Fixation to the 
support element 

 

End of overlap  

Upper and lower flange 
width is the same 

Overlap support 

Fixation to the 
upper flange  
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3.1.2. Previous studies 

Previous papers on the research of different buckling behaviour modes of single Z-sections 
due to bending can be found in the literature. These results are used to validate the design 
methods and to verify finite element models [32], [33]. Nowadays, the published papers are 
focusing on the connection zone of continuous purlins, especially on the end of the overlap 
behaviour. Wide range of tests is carried out on overlapped purlins with different overlap 
length and bolt numbers presented in [34], [35]. The experienced failure modes are followed 
by finite element analysis in case of end of overlap behaviour [36] and the deformation 
characteristics of the overlap are also determined in [37] for the specified cases. 

The design of single section is handled by standards while the design of the overlap region 
must be based on experimental tests. 

3.1.3. Conclusions on previous studies 

On the basis of the existing research studies the following conclusions can be drawn:  
- behaviour and design of single Z-sections are well established, 
- the overlap region is tested for specific sections and connection types: purlins with 

different flange widths and bolts at the middle of the overlap (purlin web to the 
support element on the top flange of the main frame), 

- the effect of various overlap length is tested on same spans.  
In the investigated literature I did not find:  

- experimental results on overlap joints: (i) purlin with same flange widths which 
results prestressed and tight connection; (ii) bolts between the two purlins in bigger 
diameter holes; and (iii) connection without bolts at the middle of the overlap, 

- design recommendation for the bending moment-shear force interaction at the end 
of overlap in case of specific overlap length, 

- design recommendation for the bending moment-transverse force interaction at the 
overlap support, 

- design recommendation for the transverse force resistance of the last member of the 
continuous system over the last support, 

- finite element model of the specific structural details: end of overlap and overlap 
support. 

3.1.4. Purpose and research strategy 

The purpose of the research is to analyse the overlap behaviour of a continuous purlin 
system in specific cases by experimental tests and calculate the design resistance and 
interaction curves in the following cases: 

- at the end of the overlap the resistance of bending moment and shear force 
interaction, 

- at the middle of the overlap (overlap support) the resistance of bending moment 
and transverse force interaction, 

- at the end support the resistance of transverse force.  
Furthermore the overlap rigidity is also intended to be determined from the test results. 
The experimental test arrangements and the results are presented in Chapters 3.2 and 3.3. 

After the evaluation of the results new design methods are proposed in Chapter 3.6. 

3.2 Test arrangement and test program 
The tests are completed in the laboratory of the Department of Structural Engineering, 

BME. Altogether 84 experimental tests are completed on Astron Z-purlins [39], [40]. Figure 
36 shows the investigated details of a continuous purlin system. 
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Figure 36. Continuous purlin system and the studied details 

A special loading frame is built for the three-point bending tests of the built-up specimens. 
Four M12 8.8 bolts are used to connect the purlins to each other (in Ø16 mm holes) at the end 
of overlap. Four purlins (two overlapped) are used for each overlap test. Special element is 
used for the support which allows the rotation of the end of the Z-sections. A gusset plate (U-
channel diaphragm) is used at the support to avoid the web crippling and the distortion of the 
end of the specimens, as shown in Figure 37. Hat sections on the upper and lower flange of 
the specimen are used as Vierendeel-type bracing to avoid lateral torsional buckling and 
distortion of the Z-sections. The hat sections are connected to the purlins by self-drilling 
screws. The load is applied by MTS hydraulic jack at midspan at the middle of the overlapped 
zone. I-sections are used as loading members and the load is measured by load cell. Figure 37 
and Figure 38 show the load application elements for each test. The load application elements 
for each test are summarized in Table 14. The deflection at midspan and the relative 
displacement at the end of the overlap are measured by inductive transducers. 

The test programs for the three structural details can be found in Table 13 and Table 14. 
Two purlin heights, three thicknesses and three spans are tested, to analyse the effect of 
various bending moment/shear force ratios of the overlap tests. Altogether 72 tests are carried 
out on overlap zone and 12 tests on the end support. The half-overlap length is strictly 324 
and 400 mm in case of 203 and 254 mm height purlins. Each test is repeated two times. 

  

  

Figure 37. Details of the test: load application elements LA1, LA3, LA4 and end support 

End support 

End of overlap 

Overlap support 
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Figure 38. Load application elements 

 

Figure 39. Test arrangements of (a) end of overlap, (b) overlap support tests and (c) end 
support tests 

  

Figure 40. Test arrangements: reinforced section at the end of overlap and end support 
tests 

Two configurations are used in the overlap tests, as it is shown in Figure 39a and b. The so 
called normal configuration (Figure 39a) is used to determine the end of overlap resistances. 
The reinforced configuration (Figure 39b) is used for the overlap support test. In this case 
reinforcing Z-purlins are applied over the end of overlap to avoid the bending moment and 
shear force interaction failure at the end of the overlap. The end of the reinforcing element is 
bolted to the original section at the end of the overlap with the overlap bolts; further 
connections are solved by self-drilling screws along the member. The stiffness of the overlap 
joint is determined in the case of normal configuration from the measured deflection and the 
relative displacement at the end of overlap, respectively.  

 

(b) 

Half-overlap span 

Half-
span 

Reinforcing elements 

Half-overlap span 

Half-
span 

(a) 

Span 

Gable Z-beam 

Load application distance 

(c) 
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Table 13. Test program for end of overlap and overlap support test 

Test 
code 

Purlin 
height  
[mm] 

Purlin 
thickness  

[mm] 

Half-
span  
[mm] 

Half-overlap  
length  
[mm] 

Configuration and load 
application elements 

normal 
(end of 
overlap) 

reinforced 
(overlap 
support) 

1 203 1.50 2324 324 LA1 LA1 
2 203 1.50 1324 324 LA1 LA1 
3 203 1.50 574 324 LA3 LA1 
4 203 1.90 2324 324 LA1 LA1 
5 203 1.90 1324 324 LA1 LA1 
6 203 1.90 574 324 LA3 LA1 
7 203 2.67 2324 324 LA1 LA1 
8 203 2.67 1324 324 LA1 LA1 
9 203 2.67 574 324 LA4 LA1 
10 254 1.70 2324 400 LA1 LA1 
11 254 1.70 1324 400 LA1 LA1 
12 254 1.70 574 400 LA4 LA1 
13 254 2.00 2324 400 LA1 LA1 
14 254 2.00 1324 400 LA1 LA1 
15 254 2.00 574 400 LA4 LA1 
16 254 2.67 2324 400 LA1 LA1 
17 254 2.67 1324 400 LA1 LA1 
18 254 2.67 574 400 LA4 LA1 

Table 14. Test program for end support tests 

Test 
code 

Purlin 
height 
[mm] 

Purlin 
thickness 

[mm] 

Span 
[mm] 

Load application 
distance [mm] 

Number of tests and 
load application 

elements 
1 203 1.50 1148 148 2 LA2 
2 203 1.90 1148 148 2 LA2 
3 203 2.67 1148 148 2 LA2 
4 254 1.70 1148 148 2 LA2 
5 254 2.00 1148 148 2 LA2 
6 254 2.67 1148 148 2 LA2 

 
Figure 39c shows the configuration of end support tests. In this case no overlap is applied, 

the resistance is determined on two purlins connected by hat sections on the upper and lower 
flanges. The test program for end support test is shown in Table 14. Altogether 12 tests are 
completed on the six various sections. 

3.3 Test results 

3.3.1. Failure modes 

In the first step the pure failure modes of a continuous purlin system are defined as detailed 
in Table 15. The observed failure modes are mainly interacted failures of those pure modes; 
these are presented in Table 16. The main results are the ultimate loads and the ultimate 
behaviour which are identified by photos and the measured force-displacement curves in 
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Figure 41 - Figure 51. The failure modes are observed at the limit point of the force-
displacement curves. 

The overlap stiffness results are evaluated in Chapter 3.5.4 from the end of overlap tests 
where reinforcing elements are not used.  

The typical failure is plate buckling (yield mechanism) at the end of the overlap (Mode 1). 
In several cases distortional buckling is experienced in the case of large spans (Mode 2) while 
pure web crippling failure is experienced in the case of the overlap support tests (Mode 3). 
Pure shear failure of the bolts at the end of the overlap is occurred only for overlap support 
tests where reinforcing elements are used (Mode 4). In the case of short specimens shear 
failures are also occurred in the interaction with plate buckling (Mode 9). 

Table 15. Pure failure modes 

Mode description 
Plate buckling (yield mechanism) at the end of the overlap 

Distortional buckling 
Web crippling at load application point 

Lip plate buckling 
Shear buckling 

Shear failure of the bolts at the end of the overlap 
Web crippling at the end support 

Failure of the gable Z-section beam 
 
In most cases pure modes did not observed, instead interacted modes are evolved which 

resulted the ultimate behaviour. After the limit point is reached in the descending branch of 
the behaviour plastic plate buckling (yield mechanism) in the case of end of overlap tests 
(Mode 6 and Mode 8) and web crippling in the case of overlap support tests (Mode 7) are 
observed. 

 

Table 16. Definition of observed failure modes 

Failure 
mode # 

Mode description 

Mode 1 Plate buckling (yield mechanism) at the end of the overlap 
Mode 2 Distortional buckling 
Mode 3 Web crippling at load application point 
Mode 4 Shear failure of the bolts at the end of the overlap 

Mode 5 
Interaction of plate buckling at the end of the overlap and web crippling at 

the load application point 

Mode 6 
Interaction of plate buckling at the end of the overlap and distortional 

buckling 

Mode 7 
Interaction of distortional buckling and web crippling at load application 

point 
Mode 8 Interaction of plate buckling at the end of the overlap and lip plate buckling 
Mode 9 Interaction of plate buckling at the end of the overlap and shear buckling 
Mode 10 Web crippling at the end support 

Mode 11 
Interaction of web crippling at the end support and failure of the gable Z-

section beam 
 



 
 
 
 

In the case of overlap support test the web crippling failure at overlap support could not be 
reached for long specimens even though the reinforcing at the end of the overlap. 
cases end of overlap failures are experienced.

The typical failure of end support test is web crippling (Mode 10). For small web height 
and large thickness the failure occurred in the gable Z

Figure 41. Plate buckling (yield mechanism) at the end

Figure 42.

Figure 43. Web crippling at load application point 
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In the case of overlap support test the web crippling failure at overlap support could not be 
reached for long specimens even though the reinforcing at the end of the overlap. 

ap failures are experienced. 
The typical failure of end support test is web crippling (Mode 10). For small web height 

and large thickness the failure occurred in the gable Z-section beam by large deformation.

Plate buckling (yield mechanism) at the end of the overlap (Mode 1)

Figure 42. Distortional buckling (Mode 2) 

Web crippling at load application point (Mode 3)

In the case of overlap support test the web crippling failure at overlap support could not be 
reached for long specimens even though the reinforcing at the end of the overlap. In those 

The typical failure of end support test is web crippling (Mode 10). For small web height 
beam by large deformation. 

 

of the overlap (Mode 1) 

 

 

(Mode 3) 



 
 
 
 

Figure 44. Shear failure of the bolts at the end of the overlap 

Figure 45. Interaction

Figure 46.  Interacti

Figure 47. Interaction
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Shear failure of the bolts at the end of the overlap 

eraction of plate buckling and web crippling (Mode 5)

eraction of plate buckling and distortional buckling 

eraction of distortional buckling and web crippling 

 

Shear failure of the bolts at the end of the overlap (Mode 4) 

 

(Mode 5) 

 

buckling (Mode 6) 

 

of distortional buckling and web crippling (Mode 7) 



 
 
 
 

Figure 48. Interaction

Figure 49. Interaction

Figure 50. 

Figure 51. Interaction 

Gable Z-section 

Purlin
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eraction of plate buckling and lip buckling (Mode 8)

eraction of plate buckling and shear buckling (Mode 9)

 Web crippling at the end support (Mode 10)

 of web crippling failure of gable Z-section beam

Purlin 

Support 

 

(Mode 8) 

 

(Mode 9) 

 

(Mode 10) 

 

beam (Mode 11) 
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3.3.2. Results of bending moment and shear force interaction at the end of the overlap 

The results of bending moment and shear force interaction are presented in Table 17 with 
the measured ultimate loads and the observed failure modes. The design values are also 
presented in the last two columns, the calculation method is presented in Chapter 3.5. 

Each test is repeated two times, the average deviation is 1.76 % and the maximum is 
4.18 %, which shows good correlation between the test results.  

Table 17. Results of bending moment and shear force interaction at the end of the overlap 

Test 
code 

Ptest [kN] Failure mode [#] MRd.test.overlap VRd.test.overlap 
1 2 1 2 [kNm] [kN] 

1 17.38 16.80 1 8 7.25 3.63 
2 33.67 33.57 6 6 7.13 7.13 
3 91.37 94.73 6 1 4.94 19.74 
4 23.30 24.34 2 2 10.61 5.30 
5 46.39 42.67 1 2 9.91 9.91 
6 140.57 137.71 9 9 7.74 30.98 
7 39.67 39.34 2 8 16.84 8.42 
8 78.22 77.76 6 6 16.62 16.62 
9 249.22 258.36 9 9 13.52 54.08 
10 27.70 28.13 6 6 11.66 6.06 
11 50.81 48.98 6 6 10.01 10.83 
12 159.46 168.29 9 9 6.19 35.57 
13 39.46 39.17 1 1 15.10 7.85 
14 80.67 74.50 6 6 14.31 15.49 
15 227.95 231.31 9 9 7.98 45.84 
16 59.78 62.02 1 1 24.39 12.68 
17 116.90 103.94 8 1 21.24 22.98 
18 371.52 371.71 9 9 13.46 77.34 

3.3.3. Results of transverse force at the end support 

The results of transverse force are presented in Table 18 with the measured ultimate loads 
and the observed failure modes. 

In these cases the average deviation is 1.04 % and the maximum is 1.52 %. 

Table 18. Results of transverse force at end support 

Test Ptest [kN] Failure mode [#] RRd.test 
code 1 2 1 2 [kN] 

1 32.21 32.59 10 10 11.98 
2 40.18 39.46 10 10 15.44 
3 81.74 80.35 11 11 30.09 
4 40.87 40.06 10 10 15.30 
5 52.73 54.36 10 10 18.62 
6 78.00 75.96 10 10 27.91 

3.3.4. Results of bending moment and transverse force interaction at the overlap support 

The results of bending moment and transverse force interaction are presented in Table 19 
with the measured ultimate loads and the observed failure modes in the first five columns. 

In these cases the average deviation is 1.40 % and the maximum is 3.16 %. 
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Table 19. Results of bending moment and transverse force interaction  

Test 
code 

Ptest [kN] Failure mode [#] MRd.test.midspan RRd.test 
1 2 1 2 [kNm] [kN] 

1 23.50 23.71 5 5 11.64 10.02 
2 37.61 35.98 7 5 10.34 15.61 
3 51.46 51.38 3 3 6.26 21.82 
4 31.56 32.90 1 1 16.68 14.35 
5 55.42 55.97 7 3 16.42 24.80 
6 83.66 79.73 3 3 10.44 36.37 
7 50.98 51.62 1 6 25.40 21.86 
8 85.39 84.70 6 2 23.99 36.24 
9 153.19 148.32 3 3 18.44 64.25 
10 37.90 37.68 3 3 19.07 16.41 
11 56.76 54.96 3 7 16.06 24.25 
12 70.97 72.26 3 3 8.92 31.09 
13 52.39 52.13 7 3 24.24 20.86 
14 80.69 85.10 3 3 21.91 33.09 
15 103.70 99.62 3 3 11.65 40.59 
16 81.10 86.35 6 4 40.50 34.85 
17 127.97 124.58 3 3 34.80 52.56 
18 161.66 170.26 3 3 19.83 69.08 

3.4 Material tests 
Tensile tests are carried out on specimens cut out from each purlin type. Altogether 30 tests 

are completed (six different sections and 5 specimens from each web). The detailed stress – 
strain curve, plotted by an MTS 80 hydraulic test equipment, can be found in [39]. The test 
results are summarized in Table 20 for the 203 mm height purlins and in Table 21 for the 254 
mm height purlins. The definition of 

eHR  and 
p0.2R  are detailed in Chapter 2.2.6. 

Table 20. Material test results for the 203 mm height purlin 

Material 
test 

specimen 

Specimen Yield stress Ultimate Ultimate 
thickness width Rp0.2 ReH stress strain 

[mm] [N/mm2] [N/mm2] [%] 
811 1.53 20.43 - 413 451 37.5 
812 1.52 20.42 - 417 460 36.5 
813 1.52 20.42 - 414 461 36.5 
814 1.52 20.46 - 413 458 38.0 
815 1.51 20.34 - 411 459 35.5 
821 1.88 20.13 401 - 514 31.0 
822 1.88 20.14 403 - 516 32.5 
823 1.89 20.19 402 - 515 33.0 
824 1.88 20.17 394 - 512 32.5 
825 1.89 20.15 398 - 515 30.5 
831 2.67 20.50 - 407 460 35.5 
832 2.67 20.56 - 411 462 38.0 
833 2.68 20.55 - 412 462 36.5 
834 2.68 20.48 - 412 461 37.5 
835 2.67 20.49 - 414 464 35.0 
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Table 21. Material test results for the 254 mm height purlin 

Material 
test 

specimen 

Specimen Yield stress Ultimate Ultimate 
thickness width Rp0.2 ReH stress strain 

[mm] [N/mm2] [N/mm2] [%] 
1011 1.71 20.24 - 401 448 37.0 
1012 1.71 20.21 - 400 451 38.0 
1013 1.70 20.24 - 405 455 38.0 
1014 1.70 20.26 - 404 453 36.0 
1015 1.71 20.19 - 404 451 36.5 
1021 2.00 20.21 435 - 533 35.0 
1022 2.00 20.20 446 - 536 34.0 
1023 2.01 20.18 443 - 533 32.0 
1024 2.00 20.16 431 - 534 30.5 
1025 1.99 20.19 443 - 538 31.5 
1031 2.64 20.54 - 429 542 31.0 
1032 2.63 20.54 - 425 542 30.0 
1033 2.64 20.53 - 424 540 31.5 
1034 2.64 20.57 - 427 543 31.0 
1035 2.65 20.54 - 427 535 34.5 

3.5 Evaluation of test results 

3.5.1. Evaluation method 

The test results of each test series are evaluated to define the standard design resistances 
according to the Eurocode 3 [60]. The adjusted values adjR  of the test results are calculated 

according to Eq. (1) and (2), where the nominal yield stress is 2
yb N/mm 390=f . 

The mean, the characteristic and the design values are calculated as: 

 
2

adj,2adj,1
m

RR
R

+
= , mkk RR ×= η  and 

M

k
sysd γ

η R
R ×=  (13)  

The observed failure is yielding failure so 9.0k =η , or it can be between 9.0...8.0k =η  if 
the observed failure is local stability, depending on effects on the global behaviour. In this 
case 9.0k =η  is used because the observed local buckling during the tests was in the elastic 
range which was followed by postcritical behaviour and the final collapse was due to the 
developed yield mechanism (means that the local buckling in the elastic range did not cause 
sudden global failure). The design value is calculated by 1sys =η  because the test conditions 

followed the applied solution, and 1M =γ  partial factor is applied (according to [59]). 
The bending moment and shear force resistance of one section is calculated as  

 
4
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M

×
=  and 
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d
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R
V =  (14)  

where VLM/  is the M/V ratio at the end of the overlap. 

3.5.2. Design resistances of end of overlap and overlap support tests 

On the basis of the calculated test based resistances the design values of the interaction of 
bending moment and shear force at the end of the overlap are shown in Figure 52a. The 



 
 
 
 

interactions of bending moment and transverse force at the overlap support are shown in 
Figure 52b. 

The tendencies of the end of 
seen clearly. In case of longer span, shear is relatively small, thus, it is reasonable to assume 
that the measured bending resistances can be considered as pure bending resistances. In other 
cases the erosive effect of shear (on the bending resistance) can be seen. Since even a 
relatively small bending has non
resistance cannot be accurately predicted from the performed tests. In case of
resistance tests failure was intended to occur at the support, involving two overlapping cross
sections. The major actions: bending and (concentrated) transverse force. In certain cases, 
especially tests with longer spans, failure occurred at the 
cases the measured bending/reaction 

Figure 52. Interaction curves: 

3.5.3. Design resistances of end support tests

The test based design results of web crippling
show the same tendencies, the crippling resistance is 
thickness and it is not dependent on the purlin h

Figure 53.

(a) 
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interactions of bending moment and transverse force at the overlap support are shown in 

end of overlap resistances of various sections and thicknesses 
. In case of longer span, shear is relatively small, thus, it is reasonable to assume 

that the measured bending resistances can be considered as pure bending resistances. In other 
ases the erosive effect of shear (on the bending resistance) can be seen. Since even a 

relatively small bending has non-negligible effect on the shear resistance, the pure shear 
resistance cannot be accurately predicted from the performed tests. In case of
resistance tests failure was intended to occur at the support, involving two overlapping cross
sections. The major actions: bending and (concentrated) transverse force. In certain cases, 
especially tests with longer spans, failure occurred at the end of overlap region
cases the measured bending/reaction force values do not represent real failure values.

 

Interaction curves: (a) end of overlap resistance (b) overlap support resistance

Design resistances of end support tests 

test based design results of web crippling are shown in Figure 53. 
, the crippling resistance is nearly linearly depend

thickness and it is not dependent on the purlin height. 

 

Figure 53. Design resistances of end support test 

(b) 

interactions of bending moment and transverse force at the overlap support are shown in 

overlap resistances of various sections and thicknesses can be 
. In case of longer span, shear is relatively small, thus, it is reasonable to assume 

that the measured bending resistances can be considered as pure bending resistances. In other 
ases the erosive effect of shear (on the bending resistance) can be seen. Since even a 

negligible effect on the shear resistance, the pure shear 
resistance cannot be accurately predicted from the performed tests. In case of support 
resistance tests failure was intended to occur at the support, involving two overlapping cross-
sections. The major actions: bending and (concentrated) transverse force. In certain cases, 

end of overlap region, thus, in these 
values do not represent real failure values. 

 

b) overlap support resistance 

. The design values 
linearly depending on the plate 



 
 
 
 

3.5.4. Overlap stiffness 

The overlap stiffness is determined by 
displacements at the end of the overlap and (ii) 
deflections. A beam model of the test setup is built, where the second moment of inertia of 
specimens is used for the whole length and the overlap stiffness is described 

rotational spring, as shown in 

same deflection – at the level of serviceability limit state 

during the tests. The results are summarized in 
section heights. There are two cases where the 
significant, which represents the uncertain behaviour of the overlap. 

The overlap stiffness can 
published in [36]. The sα  inertia factor is the modification factor of the second moment of 

inertia of the single section in the overlapped reg
determined at the level of serviceability limit state. The inertia factor is determined only for 
the longest specimens according to the span/section ratio of the referred paper. 

Figure 54. Stiffness definition of the overlap: 
limit state 

Figure 55. Overlap stiffness: 

 
 

(a)

(b)

(c)

(a) 
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The overlap stiffness is determined by two ways: (i) the evaluation of relative 
displacements at the end of the overlap and (ii) the comparison of calculated and measured 

model of the test setup is built, where the second moment of inertia of 
is used for the whole length and the overlap stiffness is described 

as shown in Figure 54b. The rotational spring sk  is calibrated to reach the 

at the level of serviceability limit state ( SLS 7.0 MM =
The results are summarized in Table 22 and shown in Figure 5
There are two cases where the deviation of the results from the tendencies is 

, which represents the uncertain behaviour of the overlap.  
 be also defined as the inertia factor of the single section as 

inertia factor is the modification factor of the second moment of 

inertia of the single section in the overlapped region (Figure 54c). This inertia factor is also 
determined at the level of serviceability limit state. The inertia factor is determined only for 
the longest specimens according to the span/section ratio of the referred paper. 

Stiffness definition of the overlap: (a) measured deflection at serviceability 
state (b) rotational spring (c) inertia factor 

 

Overlap stiffness: (a) 203 mm and (b) 254 mm height purlin

FSLS

esls

I IαSI

I IkS

FSLS

esls

FSLS

esls

(b) 

two ways: (i) the evaluation of relative 
the comparison of calculated and measured 

model of the test setup is built, where the second moment of inertia of the 
is used for the whole length and the overlap stiffness is described by a sk  

is calibrated to reach the 

Rd.tM ) – as observed 

Figure 55 for the two 
from the tendencies is 

be also defined as the inertia factor of the single section as 
inertia factor is the modification factor of the second moment of 

. This inertia factor is also 
determined at the level of serviceability limit state. The inertia factor is determined only for 
the longest specimens according to the span/section ratio of the referred paper.  

 

a) measured deflection at serviceability 

 

b) 254 mm height purlin 
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Table 22. Results of initial overlap rigidities 

Test Purlin height  Purlin thickness  Half-span  Overlap stiffness 
code [mm] [mm] [mm] 

sk  [kNm/rad] sα  

1 203 1.50 2324 5250 0.68 
2 203 1.50 1324 1640 - 
3 203 1.50 574 650 - 
4 203 1.90 2324 2625 0.45 
5 203 1.90 1324 2275 - 
6 203 1.90 574 1288 - 
7 203 2.67 2324 3245 0.40 
8 203 2.67 1324 2325 - 
9 203 2.67 574 1070 - 
10 254 1.70 2324 4300 0.46 
11 254 1.70 1324 2175 - 
12 254 1.70 574 1050 - 
13 254 2.00 2324 3400 0.43 
14 254 2.00 1324 1750 - 
15 254 2.00 574 1220 - 
16 254 2.67 2324 4925 0.39 
17 254 2.67 1324 2675 - 
18 254 2.67 574 3000 - 

 
The calculated inertia factors are compared to the results of [36]. The paper contains test 

results for different overlap length/section height ratios and structural details (number and 
position of bolts). The section height and the span differ from the current tests and the fact 
that there “perfect-fit” bolts are used. The similar tests, however, can be compared to the 
results of the paper. The presented research in [36] found that in case of small overlap 
length/section height ratio the inertia factor is less than 1. 

In [36] a prediction formula is proposed for the inertia factor; applying it for the Z254/2.67 
test by 1.3=β  (overlap length/section height ratio); the result is as follows:  

 533.018.023.0 =−×= βα  (15)  

In the current study it is found that the calculated inertia factor is ~0.45 that shows good 
agreement, concerning the differences in the bolts. 

3.6 Design method development 

3.6.1. Calculated resistances for Z-sections 

The Eurocode 3 [60] contains the resistances for various failure modes of Z-sections 
except for the overlapped zone, where the design resistance can be determined only by tests. 
In Table 23 the pure bending resistances (RdM ) and the pure shear resistances (RdV ) are 

summarized of a single Z-section for the studied cases. These values are used to compare to 
the end of overlap test based resistances. The bending moment-shear force interaction curves 
are calculated according to the Eurocode and shown in Chapter 3.6.2. 

The doubled section resistances at the middle of the overlap for bending ( Rd2M ) and for 

web crippling ( Rd2R ) are also shown in Table 23. These values are used to compare to the 
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overlap support test results. The bending moment-transverse force interaction curves are 
calculated according to the Eurocode and shown in Chapter 3.6.3. 

The web crippling design resistance (RdR ) at the end support is compared to the end 

support test results and detailed in Chapter 3.6.4. 

Table 23. Eurocode design resistances 

Purlin 
height 
[mm] 

Purlin 
thickness 

[mm] 

Single section Double section End support 
MRd 

[kNm] 
VRd 

[kN] 
MRd2 

[kNm] 
RRd2 

[kN] 
RRd 

[kN] 
203 1.50 8.64 29.23 17.28 28.89 3.30 
203 1.90 12.60 46.24 25.20 43.91 6.07 
203 2.67 20.20 90.69 40.40 81.54 13.53 
254 1.70 14.80 36.53 29.60 33.77 4.05 
254 2.00 19.40 50.62 38.80 45.78 6.27 
254 2.67 30.40 90.45 60.80 79.15 12.80 

3.6.2. End of overlap resistance 

Figure 56 shows the test based design results (dot lines) and the Eurocode interaction 
curves (continuous lines) for the two section heights. Based on the obtained results the 
following conclusions can be drawn.  

The end of overlap failure always occurs in one single section. 
As far as bending resistance is considered, the calculated Eurocode values are 

tendentiously larger by 20-25% than the measured values. This difference can be explained by 
the following facts. In case of Z-sections with relatively small end-stiffeners (lips), 
distortional buckling has pronounced role. Earlier test experiences showed that in such cases 
the Eurocode calculation gives approximately 10% higher resistances than the real resistance 
as an average (the Eurocode is unsafe), but the difference can reach even 20% [38]. 

In the evaluation of the test results, the Eurocode 3 [60] procedure is followed. Since the 
number of repetitions is only 2, the average test results are multiplied by a factor of 0.9. It is 
reasonable to assume that this 10% reduction is over-conservative, and a more accurate 
statistical evaluation would lead to a higher test values.  

In the carried-out tests holes (in the web and flange) existed just in the region where failure 
took place. Though there is no evidence on the effect of the holes, it is reasonable to assume 
that a moderate bending resistance degradation is due to the existence of holes. 

Finally, it seems that the overlap has an unfavourable effect on the bending resistance if 
failure occurs at the end of the overlaps. The number of performed tests is too few to give an 
exact quantitative assessment on this effect, but it seems it is not more than 5-10% (on the 
bending resistance).  

Based on the test results and the Eurocode methodology a design method is developed for 
these types of sections and overlap arrangement. Eq. (16) shows the bending moment 
resistance in the function of shear force. The α  and β  parameters are chosen to fit the 
interaction curves to the test based design resistances. The parameters are shown in Table 24 
and the modified interaction curves in Figure 57. 
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where plf,M  is the plastic moment resistance of the flanges, 

resistance of the cross section and 

Table 24. 

Figure 56. End of overlap resistance: 

Purlin 
height 
[mm]
203
203
203
254
254
254

Figure 57. Modified

(a) 

(a) 
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is the plastic moment resistance of the flanges, plM  is the plastic moment 

resistance of the cross section and EdV  is the applied shear force, α  and 

 

End of overlap resistance: (a) 203 mm and (b) 254 mm height purlin

Table 24. Design parameters 

Purlin 
height 
[mm] 

Purlin 
thickness 

[mm] 

Design parameters 
α  β  

203 1.50 0.825 0.775 
203 1.90 0.787 0.815 
203 2.67 0.823 0.755 
254 1.70 0.676 1.000 
254 2.00 0.738 0.952 
254 2.67 0.699 0.920 

 

Modified design curves: (a) 203 mm and (b) 254 mm height purlin

(b) 

(b) 

is the plastic moment 

and β  is defined in  

 

b) 254 mm height purlin 

 

b) 254 mm height purlin 



 
 
 
 

3.6.3. Overlap support resistance

Figure 58 shows the test base
curves (continuous lines) for the two section heights. Based o
following conclusions can be drawn

According to Eurocode calculation, 
fact: negligible) if the bending moment or the transverse force 
resistance value. Since this design rule is based on experimental evidence, and 
measured bending moment and 
greater that 25% of the resistances, it is reasonable to conclude that all the measured values 
are interacted values, i.e. pure resistance values (to bending 
measured. 

In certain cases, especially tests with longer spans, failure occurred at the end of overlap 
region, too (despite of the reinforcement in that region). These values are marked by the upper 
arrows in Figure 58. Thus, in these cases the measured bending/reaction 
represent real overlap support 

Considering the above fact, 
transverse force values lay on the E
that the applied Eurocode calculation 
bending and reaction forces) can be
resistances of the two overlapping sections

Figure 58. Overlap support resistance: 

3.6.4. End support resistance 

Figure 59 shows the test base
(continuous lines) for the two section heights.
mm support width (upper flange of the gable Z

According to the results, it can be 
than the Eurocode values. The Eurocode 
is calibrated to stiff bearing, while here flexible gable Z

The Eurocode design methodology can be
closer values to the test based design resistances. By the given modification the results remain 
on the safe side for the studied arrangements. Further research is needed to develop
general formulations. 

 

(a) 
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stance 

shows the test based design resistances (dot lines) and the Eurocode interaction 
curves (continuous lines) for the two section heights. Based on the obtained results the 

can be drawn.  
calculation, bending and transverse force interaction is weak (in 

bending moment or the transverse force is smaller that 
resistance value. Since this design rule is based on experimental evidence, and 

and transverse force values in the carried-out tests are surely 
greater that 25% of the resistances, it is reasonable to conclude that all the measured values 
are interacted values, i.e. pure resistance values (to bending or to reaction

In certain cases, especially tests with longer spans, failure occurred at the end of overlap 
region, too (despite of the reinforcement in that region). These values are marked by the upper 

Thus, in these cases the measured bending/reaction force 
overlap support failure values (the support resistance is higher)

Considering the above fact, it can be concluded that the measured 
values lay on the Eurocode interaction curve in most of the cases. This means 

calculation is applicable. The Eurocode resistance values (both 
can be calculated by a simple summation of the corresponding 

of the two overlapping sections. 

 

Overlap support resistance: (a) 203 mm and (b) 254 mm height purlin

 

shows the test based design results (dot lines) and the Eurocode 
(continuous lines) for the two section heights. The Eurocode resistances calculated with 90 
mm support width (upper flange of the gable Z-section) and two forces  

it can be concluded that the test results are 2.5
he Eurocode resistances are too conservative due to the fact that it 

is calibrated to stiff bearing, while here flexible gable Z-sections are applied as 
The Eurocode design methodology can be modified as it is shown in Eq. 

closer values to the test based design resistances. By the given modification the results remain 
on the safe side for the studied arrangements. Further research is needed to develop

(b) 

(dot lines) and the Eurocode interaction 
n the obtained results the 

interaction is weak (in 
is smaller that 25% of the 

resistance value. Since this design rule is based on experimental evidence, and since the 
out tests are surely 

greater that 25% of the resistances, it is reasonable to conclude that all the measured values 
or to reaction force) are not 

In certain cases, especially tests with longer spans, failure occurred at the end of overlap 
region, too (despite of the reinforcement in that region). These values are marked by the upper 

force values do not 
higher). 

that the measured bending moment-
interaction curve in most of the cases. This means 

resistance values (both 
f the corresponding 

 

b) 254 mm height purlin 

and the Eurocode resistances 
The Eurocode resistances calculated with 90 

2.5-3.8 times higher 
due to the fact that it 

sections are applied as support. 
modified as it is shown in Eq. (17) to reach 

closer values to the test based design resistances. By the given modification the results remain 
on the safe side for the studied arrangements. Further research is needed to develop more 



 
 
 
 

 Rdw, αR ×=

 
where the proposed modification factor 

that are depend on the yield stress
flange and web; ss  is the length of the bearing; 

the purlin.  

Figure 59. End support resista

Figure 60. Modified

3.7 Numerical models of continuous purlin

3.7.1. Introduction 

As it is mentioned in the previous studies 
overlap zone can be found in 
force interaction and overlap stiffness
overlap zone are worked out for the specific 

In case of complex structur
numerical problems as well. In those cases it is practical to tend the model development 

(a) 

(a) 
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the proposed modification factor 2.2=α ; 1k , 2k , 3k  are constants of the Eurocode 

that are depend on the yield stress, the thickness, the fillet radius and the angle between the 
is the length of the bearing; wh  is the web height and t

 

End support resistance: (a) 203 mm and (b) 254 mm height purlin

 

Modified design curves: (a) 203 mm and (b) 254 mm height purlin

of continuous purlins 

in the previous studies in Chapter 3.1.2 the finite element modeling of 
overlap zone can be found in [36]. That model concentrates on the bending moment
force interaction and overlap stiffness only. In my research various model levels of the 

for the specific – experimentally tested – structural arrangement
In case of complex structural problems and behaviour modes the FE modeling leads to 

In those cases it is practical to tend the model development 

(b) 

(b) 

M1  (17)  

are constants of the Eurocode 

, the thickness, the fillet radius and the angle between the 
t  is the thickness of 

 

b) 254 mm height purlin 

 

b) 254 mm height purlin 

the finite element modeling of 
on the bending moment-shear 

research various model levels of the 
structural arrangements. 

the FE modeling leads to 
In those cases it is practical to tend the model development from 
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the simplest model to the complex model [41]. This can be carried out by multi-level 
approaching of the problem.  

The multi-level models contains local models such as single section (Figure 61a) and 
double section (Figure 61b) and global model (Figure 61c), respectively. 

The local models are used to analyse the effect of structural and numerical approaching of 
the problem on the behaviour modes. It is easier to build these models, the run time is less and 
the analysis is more stable. The local models are used to describe the failure modes and 
resistances for the following internal forces: 

- pure bending moment (single section), 
- pure shear force (single section), 
- bending moment and shear force interaction (single section and end of overlap 

model), 
- bending moment and transverse force interaction (single and double section). 

The results of the local models can be used to determine the bending moment – shear force 
interaction curves of various sections and the bending moment – transverse force interaction 
curves.  

Parametric studies are carried out to analyse the effect of the following parameters to the 
behaviour modes and resistances: 

- holes in the web and in the flanges, 
- round or sharp edge of the section, 
- contact model in case of double section, 
- equivalent geometrical imperfection. 

Based on the experiences, the local models can be joined to a global model which can be 
used to determine the: 

-  overlap stiffness, 
-  end of overlap behaviour and resistance, 
-  overlap support behaviour and resistance, 
-  end support behaviour and resistance. 

The developed numerical model of the overlaps and supports is to be implemented to the 
program PurlinFED, presented in Chapter 5. 

3.7.2. Shell finite element models 

The various FE models of the overlapped joint are developed in Ansys FE program [64].  
The Z-section geometry corresponds to the sections applied in the experimental tests. 

Those sections are produced with same lower and upper flange widths, which mean that in the 
overlap zone the two sections are tightened together. In the FE model this phenomenon is 
eliminated, the cross-sections’ mid-planes are modeled in the distance of the plate thickness. 

In the parametric studies the cross-section is modeled with sharp and round edges, and the 
bolt holes in the web and in the flanges are modeled as well. The sharp edges can be seen in 
Figure 61a on the single section and the round corners can be seen in Figure 61b on the 
double section model. An example of the bolt holes can be seen in Figure 61a, which pattern 
is similar to the holes at the end of the overlap in the experimental tests. 

The SHELL181 shell finite element model of Ansys is applied which is able to follow the 
material and geometrical nonlinearities during virtual tests. The web, the flanges and the lips 
are divided into 26, 8 and 4 elements. This small element size is necessary to model the 
evolving yield mechanism around the edges. The total number of nodes is dependent on the 
member length; it varies from 5000-35 000.  

The ends of the local models are stiffened with constraint equations as it is shown in Figure 
61a. The loads and the boundary conditions are applied on the centre of the rigid end cross-



 
 
 
 

section in case of bending moment 
used on the center nodes to 
interaction of them. In case of bending moment 
bending moment is applied on the center node of the end cross
load is applied on the top flange by element pressure. 
the investigated experimental test can be produced. 
applied on upper and lower flange to simulate the supporting effect

The connection zone can be built up in two ways: (i) compression only beam elements 
between the purlins and (ii) contact pairs. 
analysis. Instability analyses are used to define th
imperfection. The bolts between the two purlins at the end of the overlap are modeled wi
constrained equations, where nodal 
together. 

Figure 61. Local models: (
double section with link elements between the plates

3.7.3. Local models – analysis and 

In the first step linear test analyses are carried out on the local models where the 
deformations and the internal forces are checked. After that instability analysis is carried out 
on each single section model 
buckling modes are shown in 
force. These modes are applied as equivalent geometrical imperfection for virtual tests.

The material and geometrical nonlinear FE simulation is called virtual test if the following 
conditions are satisfied: 

- the real nonlinear material properties are used, in case of linear elastic 
plastic material model the yield stress corresponds to the measured yield stress on 
coupon test; 

- the model contains the real imperfections of the str
are not measured 
consider residual stresses and geometrical imperfection, where the 
amplitude is chosen to cause the same behaviour and ultimate load
in the tests. 

Virtual test based parametric studies 
section to test the effect of bolt holes at the position of the failure
amplitude on the behaviour mode and resistanc

(a) 
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in case of bending moment – shear force interaction analyses. Kinematic load
to generate the pure bending moment, pure shear force and the 

In case of bending moment – transverse force interaction 
bending moment is applied on the center node of the end cross-sections and the concentrat
load is applied on the top flange by element pressure. By this method the interaction curves of 
the investigated experimental test can be produced. Additionally, horizontal supports are 
applied on upper and lower flange to simulate the supporting effect of the other Z

The connection zone can be built up in two ways: (i) compression only beam elements 
between the purlins and (ii) contact pairs. The contact pairs cannot be used in the instability 

. Instability analyses are used to define the shape of the equivalent geometrical 
The bolts between the two purlins at the end of the overlap are modeled wi

constrained equations, where nodal displacements in the three directions are connected 

(a) single section with holes in the web and in the top flange
with link elements between the plates and (c) global model

nalysis and results 

In the first step linear test analyses are carried out on the local models where the 
formations and the internal forces are checked. After that instability analysis is carried out 

on each single section model by various combinations of the internal forces. The first 
buckling modes are shown in Figure 62a for bending moment and in Figure 62

These modes are applied as equivalent geometrical imperfection for virtual tests.
The material and geometrical nonlinear FE simulation is called virtual test if the following 

the real nonlinear material properties are used, in case of linear elastic 
plastic material model the yield stress corresponds to the measured yield stress on 

the model contains the real imperfections of the structure: if the real imperfections 
are not measured it is possible to apply assumed geometrical imperfection 

residual stresses and geometrical imperfection, where the 
amplitude is chosen to cause the same behaviour and ultimate load

arametric studies are carried out on the local models of the single 
section to test the effect of bolt holes at the position of the failure and the imperfections

the behaviour mode and resistance.  

(c) 

(b)

Kinematic loads are 
generate the pure bending moment, pure shear force and the 

transverse force interaction analyses the 
sections and the concentrated 

interaction curves of 
Additionally, horizontal supports are 

of the other Z-purlin. 
The connection zone can be built up in two ways: (i) compression only beam elements 

The contact pairs cannot be used in the instability 
equivalent geometrical 

The bolts between the two purlins at the end of the overlap are modeled with 
displacements in the three directions are connected 

 

with holes in the web and in the top flange, (b) 
and (c) global model 

In the first step linear test analyses are carried out on the local models where the 
formations and the internal forces are checked. After that instability analysis is carried out 

various combinations of the internal forces. The first 
Figure 62b for shear 

These modes are applied as equivalent geometrical imperfection for virtual tests. 
The material and geometrical nonlinear FE simulation is called virtual test if the following 

the real nonlinear material properties are used, in case of linear elastic – perfect 
plastic material model the yield stress corresponds to the measured yield stress on 

the real imperfections 
geometrical imperfection to 

residual stresses and geometrical imperfection, where the shape and 
amplitude is chosen to cause the same behaviour and ultimate load, as experienced 

are carried out on the local models of the single 
and the imperfections’ 

(b) 



 
 
 
 

The experienced failure mode for bending moment 
mechanism of the compressed web
mode of the numerical model is experienced, as it
without and with holes. 

Figure 62. First buckling modes for (a) pure bending moment and (b) pure shear force
plastic plate buckling – yield mechanism on single section (c) without 

The imperfection sensitivity is checked on both types of single sections. Three virtual tests 
are carried out: without imperfection, with geometrical imperfection of the first and the 
second buckling mode. The amplitude of the imperfection corresponds to the thickness of the 
element. The bending moment 
hole in Figure 63. The perfect and the imperfect curves show signifi
perfect curve reaches the ultimate load 
bearing capacity starts to decrease 
show continuously increasing load bearing capaci
section and the limit point occur at higher deformation level. There is increase in the ultimate 
load compared to the perfect model: the application of the first buckling mode shows 3% 
increase while the second buckling mode shows 5% increase.
experienced in case of sections with hole
ultimate load is 3% due to the presence of holes.

Figure 63. Imperfection sensitivity of

Parametric studies are carried out on the bending moment 
problem. It can be concluded on the existing results that web crippling is more sensitive to the 
geometrical imperfections. The im
cause 30% decrease in the ultimate load. 
the two types of contact algorithms between the two sections.
model can be seen in Figure 62
as it is shown in Figure 43. 

(a) (b) 
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The experienced failure mode for bending moment – shear force interaction 
the compressed web-flange edge, as it is shown in Figure 41

mode of the numerical model is experienced, as it can be seen in Figure 62

First buckling modes for (a) pure bending moment and (b) pure shear force
yield mechanism on single section (c) without and (d) with hole

(e) web crippling failure 

The imperfection sensitivity is checked on both types of single sections. Three virtual tests 
are carried out: without imperfection, with geometrical imperfection of the first and the 

he amplitude of the imperfection corresponds to the thickness of the 
element. The bending moment – displacement curves are shown for sections 

The perfect and the imperfect curves show significant difference
perfect curve reaches the ultimate load after a partially linear phase and 
bearing capacity starts to decrease (similarly to a bifurcation curve). The imperfect curves 
show continuously increasing load bearing capacity after the first yield appears in the cross
section and the limit point occur at higher deformation level. There is increase in the ultimate 
load compared to the perfect model: the application of the first buckling mode shows 3% 

buckling mode shows 5% increase. The similar behaviour 
experienced in case of sections with hole, as it is shown in Figure 63. The decrease in the 
ultimate load is 3% due to the presence of holes. 

Imperfection sensitivity of single section with and without 

arametric studies are carried out on the bending moment – transverse force interaction 
It can be concluded on the existing results that web crippling is more sensitive to the 

geometrical imperfections. The imperfection amplitude corresponds to the thickness can 
cause 30% decrease in the ultimate load. In this case the double section local model is used by 
the two types of contact algorithms between the two sections. The failure mode of numerical 

Figure 62e which is similar to the failure mode of the experimental test, 

(c) (d) (e)

shear force interaction is yield 
Figure 41. The same failure 
Figure 62c and d, sections 

 

First buckling modes for (a) pure bending moment and (b) pure shear force and 
and (d) with hole; and 

The imperfection sensitivity is checked on both types of single sections. Three virtual tests 
are carried out: without imperfection, with geometrical imperfection of the first and the 

he amplitude of the imperfection corresponds to the thickness of the 
displacement curves are shown for sections with and without 

cant differences. The 
and suddenly the load 
The imperfect curves 

ty after the first yield appears in the cross-
section and the limit point occur at higher deformation level. There is increase in the ultimate 
load compared to the perfect model: the application of the first buckling mode shows 3% 

The similar behaviour 
The decrease in the 

 

and without hole 

transverse force interaction 
It can be concluded on the existing results that web crippling is more sensitive to the 

to the thickness can 
In this case the double section local model is used by 

The failure mode of numerical 
of the experimental test, 

(e) 



 
 
 
 

3.8 Virtual test based interaction curves

3.8.1. Bending moment and shear

The bending moment – shear force interaction curves of the tested cases are produced by 
series of virtual tests on the single section local model.
from the tests and from the numerical analyses on perfect model are shown in 
the Z203 cross-sections. As it is shown previously the imperfect results are within 3
perfect results. The numerical results are close to the experimental results, the tendencies of 
the two interaction curves are similar for all examined cross
difference between the two results 

Figure 64. Interaction curves from test and numerical results: (a) b
shear force interaction, 

3.8.2. Bending moment and transverse force interaction

Virtual tests are carried out on the double section model in perfect case and the bending 
moment – transverse force interaction curve is determined. The results
experimental results, are shown in
the curves are in good correlation with the experimental 
resistances are about 30% higher than 
parametric studies the thickness size imperfection cause about 30% decrease in the ultimate 
load which are close to the experimental results, but the imperfect analyses are not extended 
to the full test program yet. 

3.8.3. Summary and conclusion

In this chapter the development of the numerical modeling of continuous purlin system and 
the first results are presented here. 
model the interaction phenomena experi
interaction curves can be observed. In 
the ultimate resistances are within 10%. 
experimental results by virtual tests.
behaviour of the overlap support zone where double sections are applied
numerical program to the full test program
overlap stiffness and to analyse the end support behaviour modes and resistance by shell finite 
element models. 

(a) 
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Virtual test based interaction curves 

shear force interaction 

shear force interaction curves of the tested cases are produced by 
series of virtual tests on the single section local model. The points on the interaction curves 
from the tests and from the numerical analyses on perfect model are shown in 

As it is shown previously the imperfect results are within 3
The numerical results are close to the experimental results, the tendencies of 

curves are similar for all examined cross-section. The results show
difference between the two results is around 10%.  

 

Interaction curves from test and numerical results: (a) bending
 and (b) bending moment and transverse force interaction

Bending moment and transverse force interaction 

Virtual tests are carried out on the double section model in perfect case and the bending 
transverse force interaction curve is determined. The results,

are shown in Figure 64b. In these cases (perfect model) 
good correlation with the experimental results; however the 

resistances are about 30% higher than the experimental results. As is it showed in the 
parametric studies the thickness size imperfection cause about 30% decrease in the ultimate 
load which are close to the experimental results, but the imperfect analyses are not extended 

and conclusion 

he development of the numerical modeling of continuous purlin system and 
the first results are presented here. It can be concluded that the local models are accurate to 
model the interaction phenomena experienced in the tests. Similar 
interaction curves can be observed. In the case of bending moment – shear force interaction 
the ultimate resistances are within 10%. The model shows the capability to use it to extend the 

y virtual tests. Further studies are needed however 
behaviour of the overlap support zone where double sections are applied
numerical program to the full test program. The global model is necessary to determine the 

ffness and to analyse the end support behaviour modes and resistance by shell finite 

(b) 

shear force interaction curves of the tested cases are produced by a 
The points on the interaction curves 

from the tests and from the numerical analyses on perfect model are shown in Figure 64a for 
As it is shown previously the imperfect results are within 3-5% of the 

The numerical results are close to the experimental results, the tendencies of 
results show that the 

 

ending moment and 
and transverse force interaction 

Virtual tests are carried out on the double section model in perfect case and the bending 
, together with the 

(perfect model) the tendencies of 
however the ultimate 

the experimental results. As is it showed in the 
parametric studies the thickness size imperfection cause about 30% decrease in the ultimate 
load which are close to the experimental results, but the imperfect analyses are not extended 

he development of the numerical modeling of continuous purlin system and 
It can be concluded that the local models are accurate to 

 tendencies in the 
shear force interaction 

The model shows the capability to use it to extend the 
however to analyze the 

behaviour of the overlap support zone where double sections are applied and extend the 
he global model is necessary to determine the 

ffness and to analyse the end support behaviour modes and resistance by shell finite 
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4. Anti-sag system elements 

4.1 Introduction 

4.1.1. Structural problems 

In cold-formed thin-walled roof systems additional bracings are applied in the roof plane – 
called anti-sag system – to evolve the following effects: 

(i) ensure lateral support for the lower flange of the purlins in midbays, 
(ii)  derive the roof in plane forces to the main frame from the in-plane components of 

the loads, from the stressed skin forces and from earthquake excitation. 
The components of the anti-sag system are shown in Figure 65 and Figure 66: 
(i) cold-formed U-section sag channels with large openings in the web, 
(ii)  adjustable sag channel for irregular purlin spacings, 
(iii)  peak elements between the two roof planes and  
(iv) flying sag system built from tie rod elements to transfer the forces to the main 

frames. 
The design of these special elements due to the special structural arrangements and joints is 

not covered by standards.  
 

 
 

Figure 65. Arrangement of the various components of an anti-sag system 

4.1.2. Previous studies and conclusions 

In the investigated literature I did not find:  
- experimental studies on this special type of supplementary elements of thin-walled 

cold-formed roof system, 
- the behaviour modes and the design resistances of the various components, 
- finite element model which can follow the behaviour modes of the presented 

system. 

Flying-sag system 

Sag channels 

Peak element 

Purlin 

Main frame 



 
 
 
 

Figure 66.

4.1.3. Purpose and research st

The purposes of the research is to determine t
the previously presented supplementary elements of 
systems) by experimental tests and develop a shell finite element model o
the system (sag channel) for further studies

4.2 Test program 
The research is focused on the following details and internal forces:

- sag channels with various length (1350 and 1550 mm) and web (with or without 
web openings) for compression 

- adjustable piece of the sag cha
- peak channel tests for
- flying sag system in two arrangements: 

symmetrical (Figure 70
arrangement (Figure 70

The tests are completed with the aim to find the experimental behaviour modes and th
resistances; and from these results to derive the test based 
3 standardized methodology. 

The tests are completed in the Structural Laboratory of the Department
Engineering, BME. The test setup 
Astron company. In the test program
adjustable piece tests, 12 specimens for peak channel
carried out in two steps: the 
improved structural details contained 21 specimens
described qualitatively and the main design 
Altogether 72 tests are carried out.

The mechanical properties of the specimens’ base material are determined by 
tests of the sag channels, 3 tests on the 
the BZD12030 bolts (M12x30, 4.6) 

Bolts 
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Figure 66. Details of the anti-sag system 

Purpose and research strategy 

of the research is to determine the behaviour modes and design resistances 
supplementary elements of thin-walled roof system (anti

tests and develop a shell finite element model o
the system (sag channel) for further studies.  

focused on the following details and internal forces: 
ag channels with various length (1350 and 1550 mm) and web (with or without 

compression and tension, 
djustable piece of the sag channels for compression and tension
eak channel tests for compression and tension, 
lying sag system in two arrangements: Case 1 – diagonals 

Figure 70), Case 2 – diagonal in one direction
Figure 70). The flying sag system is tested for tension

The tests are completed with the aim to find the experimental behaviour modes and th
resistances; and from these results to derive the test based design resistances by the Eurocode 

 
The tests are completed in the Structural Laboratory of the Department

he test setup corresponds to the standardized structural arrangement of 
In the test program 17 specimens for sag channels

adjustable piece tests, 12 specimens for peak channels are tested. The flying sag tests are 
the first series contained 16 specimens and the second series with 

improved structural details contained 21 specimens. The observed behaviour modes are 
described qualitatively and the main design parameters are determined quantitatively.

e carried out. 
The mechanical properties of the specimens’ base material are determined by 

of the sag channels, 3 tests on the purlin base material and the mechanical properties of 
the BZD12030 bolts (M12x30, 4.6) are also determined by 3 tests. 

Sag channels:
 
 

Purlin 

Clip: CL231 

Clip: CL230 

 

and design resistances of 
roof system (anti-sag 

tests and develop a shell finite element model of the main part of 

ag channels with various length (1350 and 1550 mm) and web (with or without 

compression and tension, 

 in two directions, 
diagonal in one direction, unsymmetrical 

The flying sag system is tested for tension only. 
The tests are completed with the aim to find the experimental behaviour modes and the test 

resistances by the Eurocode 

The tests are completed in the Structural Laboratory of the Department of Structural 
structural arrangement of 

ls; 6 specimens for 
are tested. The flying sag tests are 

and the second series with 
. The observed behaviour modes are 

are determined quantitatively. 

The mechanical properties of the specimens’ base material are determined by 8 coupon 
purlin base material and the mechanical properties of 

Sag channels: 
HSG 
HSG+holes 

Flying sag 
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The test results are evaluated according to the recommendations of Eurocode 3 and the 
derived design values are presented. 

The test program for five structural arrangements is summarized in this chapter. In the first 
test series two sag channel types (with and without web openings) and two lengths (1350 and 
1550 mm) are tested for compression and tension, respectively. Each test is repeated four 
times. These are altogether 16 specimens that are summarized in Table 25. The specimens are 
tested for compression first then for tension. One test (sag channel without holes in the web 
and with 1550 mm length, test number 17) is repeated for tension test only to see the effect of 
previous compression test on the tensile resistance. This test showed that the previous 
compression test on the specimen has no effect on the tensile resistance. 

The adjustable piece is tested with three various bolt positions in the adjustable element, as 
shown in Figure 67: 

- bolt position 1: the bolt is close to the middle of the sag channel,  
- bolt position 2: the bolt is close to the end of the sag channel, 
- bolt position 3: the bolt is in the closest position to the bolt in the web of the sag 

channel. 
The test program is summarized in Table 26. Two elements are used: the adjustable piece 

CL226 and the modified sag channel HSH. 
Three various peak elements are tested at 6% (CL221), 10% (CL222) and 20% (CL223) 

roof slope; each is repeated 4 times. 
The flying sag system is tested in two structural arrangements. The results of the first test 

series showed failure modes to be avoided in the practice, so new joints are developed for the 
flying sag system. The test program for the first series is shown in Table 28 and the test 
program with improved details are shown in Table 29. The modified CL231 clip is called as 
XCL-C and the reinforcing plate is called as XCL-D in the table. The angle between the 
purlin and the tie rods are defined as α  in the last column of the table. 

Table 25. Test program for sag channel tests 

Test # Section Internal force 
L t 

[mm] [mm] 
1 1 HSG Compression+Tension 1550 1.5 
2 2 HSG Compression+Tension 1550 1.5 
3 3 HSG Compression+Tension 1550 1.5 
4 4 HSG Compression+Tension 1550 1.5 
5 1 HSG Compression+Tension 1350 1.5 
6 2 HSG Compression+Tension 1350 1.5 
7 3 HSG Compression+Tension 1350 1.5 
8 4 HSG Compression+Tension 1350 1.5 
9 1 HSG+holes Compression+Tension 1550 1.5 
10 2 HSG+holes Compression+Tension 1550 1.5 
11 3 HSG+holes Compression+Tension 1550 1.5 
12 4 HSG+holes Compression+Tension 1550 1.5 
13 1 HSG+holes Compression+Tension 1350 1.5 
14 2 HSG+holes Compression+Tension 1350 1.5 
15 3 HSG+holes Compression+Tension 1350 1.5 
16 4 HSG+holes Compression+Tension 1350 1.5 
17 1 HSG Tension 1550 1.5 
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Table 26. Test program for adjustable sag channel tests 

Test # 
Adjustable element 

and section 
Bolt 

position 
Internal force 

L t 
[mm] [mm] 

18 1 CL226+HSH  1 Compression+Tension 1550 1.5 
19 2 CL226+HSH 1 Compression+Tension 1550 1.5 
20 3 CL226+HSH 1 Compression+Tension 1550 1.5 
21 4 CL226+HSH 1 Compression+Tension 1550 1.5 
22 1 CL226+HSH 2 Compression+Tension 1550 1.5 
23 1 CL226+HSH 3 Compression+Tension 1550 1.5 

 

Table 27. Test program for peak tests 

Test # Section Internal force 
L t 

mm mm 
24 1 CL221 Compression+Tension 692 1.5 
25 2 CL221 Compression+Tension 692 1.5 
26 3 CL221 Compression+Tension 692 1.5 
27 4 CL221 Compression+Tension 692 1.5 
28 1 CL222 Compression+Tension 689 1.5 
29 2 CL222 Compression+Tension 689 1.5 
30 3 CL222 Compression+Tension 689 1.5 
31 4 CL222 Compression+Tension 689 1.5 
32 1 CL223 Compression+Tension 682 1.5 
33 2 CL223 Compression+Tension 682 1.5 
34 3 CL223 Compression+Tension 682 1.5 
35 4 CL223 Compression+Tension 682 1.5 

 

Table 28. Test program for flying sag tests 

Test # Clips Case [ ]o α  
36 1 CL230+CL231 1 26.8 
37 2 CL230+CL231 1 26.8 
38 3 CL230+CL231 1 26.8 
39 4 CL230+CL231 1 26.8 
40 1 CL230+CL231 2 27.1 
41 2 CL230+CL231 2 27.1 
42 3 CL230+CL231 2 27.1 
43 4 CL230+CL231 2 27.1 
44 1 CL230+CL231 1 7.9 
45 2 CL230+CL231 1 7.9 
46 3 CL230+CL231 1 7.9 
47 4 CL230+CL231 1 7.9 
48 1 CL230+CL231 2 8.8 
49 2 CL230+CL231 2 8.8 
50 3 CL230+CL231 2 8.8 
51 4 CL230+CL231 2 8.8 
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Table 29. Test program for flying sag tests with improved joint  

Test # Clips Tie rod ends Case [ ]o α  
52 1 XCL-C, XCL-D CL230+CL230 1 26.1 
53 2 XCL-C, XCL-D CL230+CL230 1 26.1 
54 3 XCL-C, XCL-D CL230+CL230 1 26.1 
55 4 XCL-C, XCL-D CL230+CL230 1 26.1 
56 5 XCL-C, XCL-D CL230+CL230 1 26.1 
57 1 XCL-C, XCL-D CL230+CL230 2 26.4 
58 2 XCL-C, XCL-D CL230+CL230 2 26.4 
59 3 XCL-C, XCL-D CL230+CL230 2 26.4 
60 4 XCL-C, XCL-D CL230+CL230 2 26.4 
61 1 XCL-C, XCL-D CL230+CL230 1 7.4 
62 2 XCL-C, XCL-D CL230+CL230 1 7.4 
63 3 XCL-C, XCL-D CL230+CL230 1 7.4 
64 4 XCL-C, XCL-D CL230+CL230 1 7.4 
65 1 XCL-C, XCL-D CL230+CL230 2 8.2 
66 2 XCL-C, XCL-D CL230+CL230 2 8.2 
67 3 XCL-C, XCL-D CL230+CL230 2 8.2 
68 4 XCL-C, XCL-D CL230+CL230 2 8.2 
69 5 XCL-C, XCL-D plate+CL230 2 8.2 
70 6 XCL-C, XCL-D plate+CL230 2 8.2 
71 7 XCL-C, XCL-D plate+plate 2 8.2 
72 8 XCL-C, XCL-D plate+plate 2 8.2 

 

4.3 Test arrangements 

4.3.1. Setup for sag channel and adjustable piece tests 

The test arrangement for sag channel and adjustable piece tests is shown in Figure 68. One 
sag channel is tested with the typical end detail. Two end elements are used at both ends and 
two purlins are applied for the proper connection of the sag channels. The length of the end 
elements is 500 mm. The two purlins are fixed with one bolt at one end to provide rotation 
ability.  

The end sag channels are fixed with four bolts to the end support and to the hydraulic jack. 
The load is applied by MTS hydraulic jack, the ultimate load is 250 kN (built-in load cell; 
force or displacement control; min. measuring domain 25 kN with high precision). The 
maximum displacement of the jack is 150 mm. Displacement controlled load is applied during 
the tests. The longitudinal displacement is measured by the MTS built-in measurement system. 
The various bolt positions in the adjustable piece can be seen in Figure 67. 

   

Figure 67. Bolt positions 1, 2 and 3 in the adjustable piece tests 



 
 
 
 

 
 

Figure 68. Test arrangement for sag channel and adjustable piece tests

4.3.2. Setup for peak channel tests

The test arrangement for peak channel tests is shown in
arrangement is the same as it was in the previous 
slope of specimens. One peak channel is tested with the 
are used at both ends and two purlins are applied for the proper connection of the sag 
channels. The length of the end elemen
only one end to provide free rotation.

The end sag channels are fixed with four bolts to the end support and to the
jack. Hinges are applied with horizontal axes at both ends. Displaceme
applied during the tests. The horizontal displacement is measured by the MTS built
measurement system. The test setup in the l

Figure 69.
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PurlinsEnd element 
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Test arrangement for sag channel and adjustable piece tests

Setup for peak channel tests 

The test arrangement for peak channel tests is shown in Figure 69
arrangement is the same as it was in the previous tests; the only difference is the 

. One peak channel is tested with the typical end detail
are used at both ends and two purlins are applied for the proper connection of the sag 
channels. The length of the end element is 600 mm. The two purlins are fixed with one bolt at 

free rotation. 
The end sag channels are fixed with four bolts to the end support and to the

applied with horizontal axes at both ends. Displacement controlled load is 
applied during the tests. The horizontal displacement is measured by the MTS built

system. The test setup in the laboratory can be seen in Figure 69

 

Figure 69. Test arrangement in the laboratory 
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Test arrangement for sag channel and adjustable piece tests 

Figure 69. The structural 
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nt controlled load is 
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Figure 69. 
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4.3.3. Setup for flying sag system tests 

Two structural arrangements are tested; the first one is where the original joints of the 
Astron company are applied. After the first test series the observed failure modes required the 
development of new structural detail (this is presented later on). 

The test arrangement of the first series for flying sag system is shown in Figure 70. Two 
cases are tested in a symmetrical (Case 1) and unsymmetrical (Case 2) arrangement. The 
tensile force is applied through the sag channel. The two ends of the purlin are not fixed, it 
can slide on a steel plate. The end of the sag channel can slide, as well. The applied angles of 
the diagonal can be found in Table 28. The steel quality of the applied bolts is 4.6 except the 
bolts at the far end of the tie rods where 8.8 bolts are used to avoid the failure there. The 
details can be seen in Figure 71 and Figure 72. 

For Case 2 (one diagonal tie rod) additional lateral support is applied on the lower flange 
of the purlin to avoid the lateral movement of the purlin due to the unsymmetrical 
arrangement as shown in Figure 73. The initial friction resistance of the lateral support is 60 
N and F×001.0  during the load history, where F  is the applied force perpendicular to the 
sliding direction. Two different loading equipments are used during the flying sag tests.  

Tests 36-43: the load is applied by an MTS hydraulic jack. The load and the displacement 
are measured by built-in measurement system of the MTS. 

Tests 44-51: the load is applied by a 63/40x630 hydraulic jack; force controlled; maximum 
displacement is 630 mm. In this case the load is measured by load cell and the displacement 
by inductive transducer.  

 

 

Figure 70. Test arrangement of flying sag system: (a) Case 1 and (b) Case 2 
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Figure 71. Test arrangement in the laboratory: (a) Case 1 and (b) Case 2 

  

Figure 72. Details of the test arrangement: (a) Case 1 and (b) Case 2 

 

Figure 73. Lateral support in Case 2 

After the first test series is completed new structural detail is developed at the sag channel, 
purlin and tie rod joint. As it is presented in the next chapter the failure mode was the pull-
through failure of the bolts in the web of the purlin. To avoid this failure, reinforcing plate is 
applied at the purlin web, as it can be seen in Figure 74. This figure shows new gusset plates 
at the end of the tie rods which results in less deformation of the joint. 

The other details of the second tests series are the same as in the previous cases. The load 
is applied with the 63/40x630 hydraulic jack and the force is measured in the sag channel and 
in the tie rods as well. 

Tie rod 

Tie rod 

Purlin Purlin 

Sag channel 

Sag channel 

(a) (b) 

(a) (b) 

Lateral support 

Purlin Sliding direction 
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Figure 74. Improvements of the new structural arrangement: a) reinforcement plate, b) 
gusset plate at the end of the tie rod 

4.4 Test results 

4.4.1. Failure modes 

The results of the sag channel and flying sag system tests are the ultimate loads of the 
specified failure modes, the ultimate behaviour and the load-deformation curves. In the first 
step the observed failure modes are presented. After that the test results are summarized for 
the whole test program. The experienced failure modes for compression and tension are 
summarized in Table 30-Table 32.  

Table 30. Sag channel failure modes for compression 

Mode # Definition 
c1) Flexural-torsional buckling 
c2) Flexural buckling 
c3) Interaction of flexural-torsional buckling and local buckling 
c4) Interaction of global mechanism and flexural buckling 
c5) Local buckling at the web of the sag channel 
c6) Interaction of global mechanism and local buckling 
 

Table 31. Sag channel failure modes for tension 

Mode # Definition 
t1) Bearing failure of the bolted connection 

 

Table 32. Flying sag failure modes 

Mode # Definition 
t2) Pull-through failure of the bolts in the purlin web 
t3) Bolt shear failure in the CL231 clip 
t4) Pull-through failure of the bolts in the CL230 clip 
t5) Tie rod tensile failure 

 
The defined modes are identified by experimental observation of the failure modes which 

are presented below. 
Mode c1): Flexural-torsional buckling 

(a) (b) 

Reinforcement 

Gusset plate 
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Typical failure mode for the longer (1550 mm) HSG sag channels without holes, Figure 75. 

  

Figure 75. Failure mode c1), c2) and c3)  

Mode c2): Flexural buckling 
Typical failure mode for the shorter (1350 mm) HSG sag channels without holes, Figure 

75. 
Mode c3): Interaction of flexural-torsional buckling and local buckling 
Typical failure mode for the HSG channels with holes, Figure 75. 
Mode c4): Interaction of global mechanism and flexural buckling 
Failure mode of the adjustable piece only, if the bolt is close to the end of the sag channel 

(bolt position 2), Figure 76. 

 

Figure 76. Failure mode c4) 

Mode c5): Local buckling at the web of the sag channel 
Typical failure mode for peak channel tests, Figure 77. This failure occurs if the end of the 

sag channel reaches the purlin before the BZD08160 bolt starts to work for compression. 

 

Figure 77. Failure mode c5), c6) and t1) 

Adjustable piece 
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Mode c6): Interaction of global mechanism and local buckling 
Typical failure mode for the peak channel with higher roof slope, Figure 77. 
Mode t1): Bearing failure of the bolted connection (BZD08160) 
Failure mode of all specimens under tension, Figure 77. 
Mode t2): Pull-through failure of the bolts in the purlin web 
Typical failure mode for Case 1 with large angle, Figure 78. 

  

Figure 78. Failure mode t2)  

Mode t3): Bolt shear failure in the CL231 clip 
Typical failure mode of the flying sag system, the shear failure of the BZD12030 bolts in 

the CL231 clip, Figure 79. Note that the “shear failure” means a combined tension-shear 
failure due to the rotation of the bolt axis. 

  

Figure 79. Failure mode t3) 

Mode t4): Pull-through failure of the bolts in the CL230 clip 
This failure mode is occurred when the sliding support reached the deformation limit 

which increased the force in the tie rod, Figure 80. This test is not used in the evaluation 
method because it cannot be occurred in a real structure. 

  

Figure 80. Failure mode t4) 
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Mode t5): Tie rod tensile failure 
This failure mode is occurred when the sliding support reached the deformation limit 

which increased the force in the tie rod, Figure 81. This test is not used in the evaluation 
method because it cannot be occurred in a real structure. 

  

Figure 81. Failure mode t5) 

Beyond the ultimate failure modes defined above, the following ultimate behaviour modes 
are observed: (i) crack in the weld of the CL230 clip, (ii) large deformation of the CL230 clip, 
(iii) large deformation of the tie rod at the end near to the CL231 clip, (iv) deformation of the 
hole in the sag channel (at the connection to each other). Furthermore, it can be concluded 
that these connection types are very “soft”. Large deformation is experienced of the system 
(mainly in the CL231 clip), the maximum displacement in the direction of the sag channel can 
be ~250 mm. The residual deformation can be significant as well. This behaviour indicates 
the application of new end gusset plates of the tie rods which results less deformation. 

The test result summarized in the next section belongs to the ultimate limit state of the 
connection. The serviceability limit state is not analysed; these can be studied by the 
functional requirements of the roof system. 

4.4.2. Typical force-displacement diagrams 

Force-displacement curves of the four structural details are shown in Figure 82-Figure 85 
and described below. 

Figure 82 shows a typical axial force - axial displacement curve of the sag channel tests. 
Compression force is applied first on the specimen. The uploading curve part is marked with 
1 in the figure. The specimen is unloaded after 12 kN (~60 % of the ultimate load). The un- 
and uploading loop is marked with 2. The residual deformation of the system is 10 mm 
(~50 % of the total displacement), and the second uploading stiffness is more rigid than in the 
first one due to the slip of the bolted connection in the structure for the first load. After the 
compression failure (buckling) is occurred and the ultimate load is reached (point 3) the 
structure is unloaded and the tension load is started. The residual deformation is 10 mm. The 
stiffness of the first tension part is low due to the re-arrangement of the structural connections 
(part 4 in the figure). After 10 kN (~60 % of the ultimate load) the tension load is unloaded 
and uploaded again. The loop is marked with 5. The residual deformation from the point 
where the load is turned into tension is 15 mm, which is also 50 % of the total deformation for 
tension. The stiffness of the reloading is higher comparing to the first loading due to the slip 
of the bolted connection between the sag channels for the first loading. The tension failure is 
occurred at point 6 in the curve. 

The same loading procedure is carried out on the adjustable elements of the sag system, as 
shown in Figure 83. The stiffness of the adjustable elements for compression and tension is 



 
 
 
 

less than the normal sag channel stiffness
system. 

Figure 82. Typical force

Figure 83. Typical force-displacement curve of adjustable piece tests for compression and 

The force-displacement curve of the peak element is shown in 
peak elements for compression
figure). After the local buckling is occurred
additional load bearing capacity 
global uplift deformation of the structure is turned into downwards movement until the 
specimen reached the support. This means 
specimen moved back to the original position. 

The test curves of the flying sag system are shown in 
for the second test series with improved connection. In the second series the force
rods are also measured. The first figure shows 
(~60 % of the ultimate load). 
avoid this failure type new connection is developed as it i
behaviour of the new connection is more ductile and the ultimate load is higher due to the 
same failure as it is observed in the sag channel tests.

 
 

3 

3 

2
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less than the normal sag channel stiffness because there are more bolted connection

Typical force-displacement curve of sag channel tests for com
tension 

displacement curve of adjustable piece tests for compression and 
tension 

displacement curve of the peak element is shown in Figure 84
compression is very soft especially in case of large roof slopes

fter the local buckling is occurred in the lower flange of the sag channel (point 2)
additional load bearing capacity is observed. After failure the load is turned i
global uplift deformation of the structure is turned into downwards movement until the 

the support. This means in this case there is no residual deformation
specimen moved back to the original position. Tensile failure is occurred at point 4.

The test curves of the flying sag system are shown in Figure 85 for the first test series and 
for the second test series with improved connection. In the second series the force

so measured. The first figure shows unloading and uploading loop after 8 kN
. Figure 85 shows sudden failure which is not favo

avoid this failure type new connection is developed as it is presented previously
behaviour of the new connection is more ductile and the ultimate load is higher due to the 
same failure as it is observed in the sag channel tests. 
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displacement curve of sag channel tests for compression and 

 

displacement curve of adjustable piece tests for compression and 

Figure 84. The behaviour of 
is very soft especially in case of large roof slopes (part 1 in the 

in the lower flange of the sag channel (point 2) 
After failure the load is turned into tension, the 

global uplift deformation of the structure is turned into downwards movement until the 
in this case there is no residual deformation, the 

e is occurred at point 4. 
for the first test series and 

for the second test series with improved connection. In the second series the forces in the tie 
and uploading loop after 8 kN 

shows sudden failure which is not favourable and to 
s presented previously. The 

behaviour of the new connection is more ductile and the ultimate load is higher due to the 



 
 
 
 

 

Figure 84. Typical force-

Figure 85. Typical force-displacement curve of 

4.4.3. Test resistances 

The test numbers, the test data, 
failure modes are summarized in 
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tension 

displacement curve of the (a) first and (b) second 

the test data, the resistances obtained from the tests 
are summarized in Table 33-Table 37.  
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Table 33. Test results on sag channels 

Test # Section 
L t Fc

Test Ft
Test Failure mode 

[mm] [mm] [kN] [kN] comp. ten. 
1 1 HSG 1550 1.5 -19.72 16.83 c1) t1) 
2 2 HSG 1550 1.5 -18.86 15.54 c1) t1) 
3 3 HSG 1550 1.5 -15.25 17.67 c1) t1) 
4 4 HSG 1550 1.5 -15.11 17.09 c1) t1) 
5 1 HSG 1350 1.5 -26.35 17.01 c2) t1) 
6 2 HSG 1350 1.5 -25.25 18.85 c2) t1) 
7 3 HSG 1350 1.5 -25.59 20.60 c2) t1) 
8 4 HSG 1350 1.5 -25.10 16.56 c2) t1) 
9 1 HSG+holes 1550 1.5 -10.67 18.27 c3) t1) 
10 2 HSG+holes 1550 1.5 -14.35 18.99 c3) t1) 
11 3 HSG+holes 1550 1.5 -13.01 17.82 c3) t1) 
12 4 HSG+holes 1550 1.5 -16.23 16.20 c3) t1) 
13 1 HSG+holes 1350 1.5 -19.01 17.07 c3) t1) 
14 2 HSG+holes 1350 1.5 -11.66 17.16 c3) t1) 
15 3 HSG+holes 1350 1.5 -12.35 15.85 c3) t1) 
16 4 HSG+holes 1350 1.5 -19.27 18.25 c3) t1) 
17 1 HSG 1550 1.5 - 16.53 - t1) 

 

Table 34. Test results on adjustable test channels 

Test # Section 
Bolt 

position 
L t Fc

Test Ft
Test Failure mode 

[mm] [mm] [kN] [kN] comp. ten. 
18 1 CL226+HSH 1 1550 1.5 -16.63 15.34 c1) t1) 
19 2 CL226+HSH 1 1550 1.5 -16.23 16.51 c2) t1) 
20 3 CL226+HSH 1 1550 1.5 -15.09 17.81 c2) t1) 
21 4 CL226+HSH 1 1550 1.5 -16.03 17.13 c2) t1) 
22 1 CL226+HSH 2 1550 1.5 -18.38 18.54 c4) t1) 
23 1 CL226+HSH 3 1550 1.5 -16.96 18.54 c2) t1) 
 

Table 35. Test results on peak channels 

Test # Section 
L t Fc

Test Ft
Test Failure mode 

[mm] [mm] [kN] [kN] comp. ten. 
24 1 CL221 692 1.5 -23.81 16.46 c1) t1) 
25 2 CL221 692 1.5 -23.71 17.28 c5) t1) 
26 3 CL221 692 1.5 -19.27 14.81 c5) t1) 
27 4 CL221 692 1.5 -21.08 17.18 c5) t1) 
28 1 CL222 689 1.5 -13.71 17.44 c6) t1) 
29 2 CL222 689 1.5 -13.41 17.34 c6) t1) 
30 3 CL222 689 1.5 -14.32 16.79 c6) t1) 
31 4 CL222 689 1.5 -13.16 15.54 c6) t1) 
32 1 CL223 682 1.5 -9.21 17.07 c6) t1) 
33 2 CL223 682 1.5 -7.94 17.81 c6) t1) 
34 3 CL223 682 1.5 -8.66 18.30 c6) t1) 
35 4 CL223 682 1.5 -7.53 19.63 c6) t1) 
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Table 36. Test results on first flying sag system 

Test # Section Case [ ]o α  Ft
Test [kN] 

Failure 
mode 

36 1 CL230+CL231 1 26.8 11.64 t2) 
37 2 CL230+CL231 1 26.8 14.32 t2) 
38 3 CL230+CL231 1 26.8 13.68 t2) 
39 4 CL230+CL231 1 26.8 14.31 t2) 
40 1 CL230+CL231 2 27.1 13.95 t3) 
41 2 CL230+CL231 2 27.1 13.31 t3) 
42 3 CL230+CL231 2 27.1 12.63 t3) 
43 4 CL230+CL231 2 27.1 13.48 t3) 
44 1 CL230+CL231 1 7.9 9.16 t3) 
45 2 CL230+CL231 1 7.9 11.03 t3) 
46 3 CL230+CL231 1 7.9 9.76 t2) 
47 4 CL230+CL231 1 7.9 11.13 t2) 
48 1 CL230+CL231 2 8.8 7.89 t3) 
49 2 CL230+CL231 2 8.8 9.16 t3) 
50 3 CL230+CL231 2 8.8 7.99 t3) 
51 4 CL230+CL231 2 8.8 8.27 t3) 

 

Table 37. Test results on second flying system with improved joint  

Test # Case [ ]o α  Ft
Test 

[kN]  
Srod1

Test 
[kN] 

Srod2
Test 

[kN] 
Failure 
mode 

52 1 1 26.1 16.31 11.80 12.53 t1) 
53 2 1 26.1 17.19 15.42 18.20 t1) 
54 3 1 26.1 21.95 16.68 19.86 t1) 
55 4 1 26.1 14.04 12.16 14.24 t1) 
56 5 1 26.1 14.37 11.89 13.02 t1) 
57 1 2 26.4 14.51 - 23.09 t1) 
58 2 2 26.4 13.59 - 20.88 t1) 
59 3 2 26.4 14.67 0.02 25.30 t1) 
60 4 2 26.4 13.28 4.83 30.16 t1) 
61 1 1 7.4 13.07 21.75 18.85 t1) 
62 2 1 7.4 16.98 17.95 21.06 t1) 
63 3 1 7.4 13.22 20.99 18.43 t1) 
64 4 1 7.4 15.84 20.37 20.85 t1) 
65 1 2 8.2 11.95 10.17 30.53 t1) 
66 2 2 8.2 13.65 7.18 40.21 t1) 
67 3 2 8.2 12.12 7.94 31.59 t4) 
68 4 2 8.2 15.44 9.63 40.00 t5) 
69 5 2 8.2 15.21 16.86 39.82 t1) 
70 6 2 8.2 14.15 23.79 44.01 t1) 
71 7 2 8.2 15.00 14.55 - t1) 
72 8 2 8.2 15.12 16.92 - t1) 
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4.5 Material tests 
Tensile tests are carried out on specimens cut from various sag channel types, purlins and 

bolts. The tests are carried out by the AGMI Material Testing and Quality Control Co. Ltd., 
Hungary. 

The results of various sag channel material test are summarized in Table 38. The specimen 
signs are as follows: SH – sag channels with holes, SP – peak channel element, SF – sag 
channels without holes and SA – adjustable piece element.  

Purlin failure is experienced during the flying sag test; this explains the purlin material 
tests which are summarized in Table 39.  

Bolt failure also experienced in case of flying sag tests. The material test results on 
BZD12030 bolts are summarized in Table 40. The averages of the 3 measured values are used 
in the design process for both failure modes.  
 

Table 38. Material test results of sag channels 

Material 
test 

specimen 

The specimen Yield 
stress Ultimate 

stress 
Ultimate 

strain thickness 
thickness 
without 

zinc 
width 

Rp0,2 

mm N/mm2 % 

SH 1.53 1.49 19.80 444 537 22.5 
SP 1.52 1.48 19.72 457 547 15.0 
SF 1.54 1.50 19.74 442 537 17.5 
SA 1.53 1.49 19.80 450 540 16.5 

Average: 1.49 Average: 448 
 

SAG-2 1.44 1.41 19.60 416 506 21.5 
SAG-8 1.45 1.42 19.50 413 509 22.5 
SAG-11 1.45 1.42 19.50 410 507 24.5 
SAG-18 1.45 1.42 19.60 415 508 20.5 

Average: 1.42 Average: 414 
 

 

Table 39. Material test results of purlins 

Material 
test 

specimen 

The specimen Yield 
stress Ultimate 

stress 
Ultimate 

strain thickness 
thickness 
without 

zinc 
width 

Rp0,2 

mm N/mm2 % 

P1 1.54 1.50 20.00 369 489 22.0 
P2 1.55 1.51 20.20 361 485 24.0 
P3 1.54 1.51 20.30 366 489 22.5 

Average: 1.51 Average: 365 
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Table 40. Material test results of BZD12030 bolts 

Material 
test 

specimen 

The specimen outside 
diameter 

Ultimate 
force 

Position of 
failure Minimum Maximum Fmax 

mm N 

B1 11.57 11.75 44700 bolt thread 
B2 11.50 11.74 43200 bolt thread 
B3 11.70 11.75 43900 bolt thread 

Average: 11.67 43933   

4.6 Evaluation of test results 

4.6.1. Evaluation method 

The test results of each test series are evaluated to define the standard design resistances 
according to the Eurocode 3 [60]. In case of four tests the adjusted and characteristic values 
are calculated for 2

yb N/mm 390=f  nominal yield stress as follows:  

 
Riobs,iadj, / µRR = , 

4
iadj,

m
∑=

R
R  and skRR ×−+= /mk  (18)  

where Rµ  is calculated according to Eq. (2), and for bolt failure: 
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 (19)  

obsu,F   is the measured ultimate force of the bolt, 

uF    is the nominal ultimate force of the bolt, 

1=α   if obsu,F > uF , otherwise 0=α . 

 
and k  is a coefficient from the standard, if the number of tests is 4 then 63.2=k , 
and s is the standard deviation: 
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The design value can be calculated as follows: 

 
M

k
sysd γ

η R
R ×=  (21)  

1sys =η  because the test conditions followed the applied solution and 1M =γ  partial factor 

is applied (according to Eurocode and the National Annexes [59]). 
For the bolts the following nominal values are used: tensile stress area: 2

s  3.84 mmA = , 

ultimate force: NfAF  337204003.84usu =×=×= . 

There are 3 cases (tests 17, 22 and 23 in Table 25) where only one test is carried out, in 
those cases the characteristic value is calculated as follows: 

 mkk 9.0 RR ××= η  (22)  
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where 9.0k =η  because the observed failure is yielding failure, which is true for the tension 

failure and 7.0k =η  because the observed failure is overall instability, which is true for the 

compression failure modes. For Case 2 tests with o8.8=α  where both failure modes are 
experienced the characteristic value is calculated according to two tests as is shown in Eq. 
(13), where 9.0k =η  is applied because the observed failure is yielding failure. The design 
resistances are summarized in Table 41. Note that for the adjustable piece (CL226+HSH) the 
minimum design resistance for compression is shown. 

Table 41. Design resistances of various sections for compression and tension 

Section 
L Design resistances 

[mm] compression [kN] tension [kN] 
HSG 1550 -9.64 12.72 
HSG 1350 -21.27 11.82 

HSG+holes 1550 -6.52 12.92 
HSG+holes 1350 -4.14 12.73 

CL226+HSH 1550 -9.32 12.16 
CL221 - 6% 692 -14.00 11.62 
CL222 - 10% 689 -10.67 12.52 
CL223 - 20% 682 -5.50 13.30 

 
The design resistances for flying sag systems are summarized in 0. The tensile force in one 

tie rod is calculated according to the equilibrium equations on the final-deformed-geometry, 
Figure 86 and Eq. (23)-(26), in case of the first test series. The angle of the tie rods at the 
failure is calculated from the start angle and the deformation in the direction of the sag 
channel what is measured during the tests. For Case 2 (where the additional lateral support is 
applied) the force in the sag channel is reduced by the friction resistance of the support, as 
shown in Figure 86. The second series of flying sag system contains measured forces in the 
tie rods in Table 42. 

 

Figure 86. Calculation of the force in the tie rods – (a) Case 1 and (b) Case 2 

 ( ) 1 Casefor       
sin2 α

T
S =  (23)  

 ( ) ( ) 2 Casefor       
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(26)  

Note: the 0.06 kN is the initial friction force of the lateral support. 

(a) (b) 
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Table 42. Characteristic resistances of various configurations of the flying sag tests 

Section Case [ ]o α  Failure 
mode 

Characteristic resistances 

tension force in the sag 
channel, T [kN] 
measured values 

tension force in one 
tie rod, S [kN] 
calculated and 

measured values 
CL230+CL231 1 26.8 t2) 10.02 10.67 
CL230+CL231 2 27.1 t3) 9.07 19.00 

CL230+CL231 2 8.8 
t3) 6.97 15.86 
t2) 9.28 20.76 

CL230+CL231 1 7.9 t3) 5.14 20.82 
CL230+CL230 1 26.1 t1) 11.22 7.56 
CL230+CL230 2 26.4 t1) 11.94 14.09 
CL230+CL230 1 7.4 t1) 9.45 15.58 
plate+CL230 2 8.2 t1) 12.91 36.87 
plate+plate 2 8.2 t1) 13.25 - 

4.6.2. Conclusion on the test results 

Altogether 72 tests are designed and fulfilled on anti-sag system elements and the failure 
modes are determined for each element. The various sag channel test (main element, 
adjustable piece, peak element) showed similar failure modes for tension in the bolted 
connection of the sag channels, which results close design resistances for tension. The 
flexural-torsional compression resistances depend and vary according to the member length as 
it is expected. The various failure modes of the peak elements are also determined. 

The first test series of the flying sag system showed large deformation in unsymmetrical 
cases. The design values correspond to large deformation of the connection, which usually 
cannot be developed in a real structure. The serviceability limit of this connection type can be 
determined from the force-displacement curves of those tests, where the design forces 
belonging to a maximum allowable displacement level.  

To reduce the deformation of the system and increase the tensile resistance of the joint new 
structural detail is developed. The experimental tests of the improved connection certified that 
the failure mode of the new flying sag system occurs in the sag channel which was the 
weakest point in the previous tensile details.  

In the research the design resistances of the various elements are also determined. 

4.7 Numerical model of the sag channel 
Shell finite element models of the sag channels are developed under my guidance by 

student T. Curávy for the Student Scientific Conference [45]. The aim of the study is to model 
the behaviour modes of the main part of the anti-sag system for compression. The details of 
the FE model are presented in this chapters. The model results are verified by the 
experimental tests and the appropriate equivalent geometrical imperfections are determined 
for virtual tests.  

4.7.1. Shell finite element model 

The shell finite element model of the sag channel is developed in Ansys FE program [64]. 
The model geometry corresponds to the real geometry of the sag channel: the large web holes 
and the end details with bolt holes are modeled, respectively. Two mesh densities are used: 
around the bolt holes the largest element size is 1 mm while in the undisturbed zone the least 



 
 
 
 

density is 12 mm. The small mesh size 
the applicability of the large mesh size is 
the details can be seen in Figure 87
values in Chapter 4.5.  

Shell finite element called SHELL181 in Ansys is used to be able to follow the material 
nonlinearities and large displacement during the virtual tests. 
the number of elements is ~5500 and the 

The end support and load is applied in the center of the bolt holes with constraint equations. 
The load is applied by force 
detailed later on. This results exact eccentric load application as it was in the experimental 
tests, however in the model the ga

Figure 87. FE model: (a) global mesh, (b) 

4.7.2. Results of linear analysis

The model tested by linear analysis for compression. The deformed shape is shown in 
Figure 88. It can be observed that the eccentric load cause bending ab
cross-section. 

Figure 88. Linear 

4.7.3. Results of instability analysis

Instability analysis is carried out on the shell model
Figure 89. The first mode is flexural
buckling of the flanges can be observed as well; the third mode is local and contains the 
deformation of the unrestrained flanges at the web holes. The
critical load factor which are loca

These three buckling modes are used as 
which means that the perfect FE model geometry is 
modes. Either one mode or combin

(a) 

(b) 
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density is 12 mm. The small mesh size is necessary for the proper modeling of the holes and 
large mesh size is proved by convergence studies. 

igure 87. The thickness of the model corresponds to

Shell finite element called SHELL181 in Ansys is used to be able to follow the material 
nonlinearities and large displacement during the virtual tests. The number of nodes is ~6000, 

ber of elements is ~5500 and the total number of DOF’s is ~36000.
The end support and load is applied in the center of the bolt holes with constraint equations. 

The load is applied by force or by displacement according to the analysis method
This results exact eccentric load application as it was in the experimental 

the model the gap in the bolted connection is not considered

global mesh, (b)  the corner of the web hole and

inear analysis 

linear analysis for compression. The deformed shape is shown in 
It can be observed that the eccentric load cause bending about the minor axis of the 

Linear analysis – deformation under compression

nstability analysis 

Instability analysis is carried out on the shell model and three typical modes can be seen in 
The first mode is flexural-torsional; the second mode is flexural but the local 

buckling of the flanges can be observed as well; the third mode is local and contains the 
deformation of the unrestrained flanges at the web holes. There are other 

are local modes with various patterns in the flanges.
buckling modes are used as the shapes of equivalent geometrical imperfect

which means that the perfect FE model geometry is modified by the displacement
combination of several modes is used.  

(c) 

is necessary for the proper modeling of the holes and 
. The full model and 

. The thickness of the model corresponds to the measured 

Shell finite element called SHELL181 in Ansys is used to be able to follow the material 
The number of nodes is ~6000, 

is ~36000. 
The end support and load is applied in the center of the bolt holes with constraint equations. 

by displacement according to the analysis method that are 
This results exact eccentric load application as it was in the experimental 

is not considered. 

 

 

and (c) the bolt hole 

linear analysis for compression. The deformed shape is shown in 
out the minor axis of the 

 

compression 

modes can be seen in 
second mode is flexural but the local 

buckling of the flanges can be observed as well; the third mode is local and contains the 
other modes with higher 

in the flanges. 
equivalent geometrical imperfection 

the displacements of these 
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Figure 89. Three buckling modes of the sag channel FE model 

4.8 Virtual test on sag channels 
The material and geometrical nonlinear FE simulation is carried out as virtual tests. (The 

definition of a virtual test is presented in Chapter 3.7.3.) 
The Eurocode 3 contains suggestion to the size and the distribution of the equivalent 

geometrical imperfection in [59] and [61] which can be used for welded or hot-rolled sections 
only. In the current experimental based numerical research the proper imperfections are 
determined to obtain the same behaviour mode and ultimate load as it was observed during 
the tests. 

4.8.1. Finite element model for virtual test 

The FE model is modified according to the requirement of the virtual tests. Linear elastic – 
perfect plastic material model is applied with the measured yield stress.  

The geometry of the FE mesh is modified according to the first three buckling modes 
presented above. In case of sag channel length 1550 mm with web holes (Test 9-12) in Table 
25 the following amplitudes and combination of the modes are applied: 

- 1. mode: L/110-L/30, 
- 1. and 2. modes: L/150-L/42 and L/150-L/30, 
- 1. and 2. and 3. modes: L/150-L/110, L/120 and L’/50,  

where L is the member length (1550 mm in this example), L’ is the length of the web hole 
(532 mm) and the result value is the maximum displacement perpendicular to the longitudinal 
axis of the sag channel. Altogether 18 virtual tests are carried out to analyse the imperfection 
sensitivity. The other section types such as sag channel without web holes and member length 
are also modeled but the results are not presented here. 

4.8.2. Virtual test results 

The results of the virtual tests are the force - axial displacement curves and the failure 
modes. In all cases the virtual test failure modes are the same as in the experimental tests. The 
tests results of the experimental tests of sag channel length 1550 mm with web holes (Test 9-
12) are shown in Figure 90. It can be observed that there is a big scatter in the ultimate load of 
the experimental tests; the ultimate load varies from 10-16 kN. 

Various equivalent geometrical imperfections have effect on the stiffness of the 
compressed member which modifies the gradient of the force - axial displacement curve and 
it has effect on the ultimate load, too. The stiffness of the FE model is usually higher than in 
the test due to the lack of exact modeling of the loose bolted connection at the ends. It can be 
concluded from the parametric studies that the smallest ultimate load from the test can be 
achieved by L/42 and the largest ultimate load with L/110 imperfection amplitude of the first 
buckling mode, where L is the member length. These two curves are shown in Figure 90 as 
well.  

Mode 1 Mode 2 Mode 3 

L L 

L’ 



 
 
 
 

The same imperfection amplitudes can be applied on the sag channels with 1350 and web 
holes (Test 13-16). By the application of the verified imper
the test can be determined within 

The FE model of the sag channel without web holes 
results, too. In those cases the 
application of L/15 imperfection amplitude of the first buckling mode. 

Figure 90.

4.8.3. Conclusion on numerical results

The shell FE model of the main part of the anti
results are verified with the experiment
members with various length and web holes. 
equivalent geometrical imperfection
determined according to the test results to reach the 

The verified numerical model is capable to extend the experimental test program for 
further lengths and structural arrangements and the results can be used in the test based design 
procedure to determine design resistances. Furthermore it can be built into the FE model of a 
roof system.  
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The same imperfection amplitudes can be applied on the sag channels with 1350 and web 
By the application of the verified imperfection L/42 the ultimate load of 

within 5%. 
The FE model of the sag channel without web holes are verified with the experimental 

results, too. In those cases the minimum ultimate load of the tests can be 
L/15 imperfection amplitude of the first buckling mode.  

Figure 90. Test results and virtual test 

numerical results 

The shell FE model of the main part of the anti-sag system is developed and the model 
results are verified with the experimental tests. Virtual test are carried out on compressed 
members with various length and web holes. By virtual tests the shape and amplitude of the 
equivalent geometrical imperfections are determined. The size of the imperfection is 

the test results to reach the minimum ultimate load of the tests. 
The verified numerical model is capable to extend the experimental test program for 

further lengths and structural arrangements and the results can be used in the test based design 
re to determine design resistances. Furthermore it can be built into the FE model of a 

The same imperfection amplitudes can be applied on the sag channels with 1350 and web 
the ultimate load of 

verified with the experimental 
can be determined by the 

 

sag system is developed and the model 
al tests. Virtual test are carried out on compressed sag 

the shape and amplitude of the 
The size of the imperfection is 

ultimate load of the tests.  
The verified numerical model is capable to extend the experimental test program for 

further lengths and structural arrangements and the results can be used in the test based design 
re to determine design resistances. Furthermore it can be built into the FE model of a 
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5. FE and experimental based design methodology of roof systems 

5.1 Introduction 

5.1.1. Structural and design problems 

The structural problems of cold-formed thin-walled roof systems are presented in my 
research by the experimental and numerical analyses of its various components. The problem 
of compressed Z-purlins is presented in Chapter 2. The overlap region and end support of 
continuous purlin system is analysed in Chapter 3. The structural problems of anti-sag 
elements of the roof system are brought on in Chapter 4. 

The restraint effect of the cladding to the purlin leads to new complex structural problems. 
Various types of cladding systems are exist in the industry that represent rotational and lateral 
restraint to the purlin which must be handled in the design.  

It can be clearly seen that the structural arrangement of cold-formed thin-walled roof 
systems are very complex, which leads to complicated behaviour modes and require 
sophisticated design methodology. 

5.1.2. Previous studies 

The previous studies of the roof system components are presented in the previous chapters. 
Here only the previous studies of the purlin-cladding interaction and the applied design 
methods are discussed. 

The rotational effect of the cladding system to the behaviour of Z-purlins is analysed by 
GBT in a simplified way formerly in [43] for engineers. Experimental tests are carried out on 
analysing the full or partial restraining effect of the sheeting on Z- and ∑-sections in 
laboratory in [44], or by full-scale site tests in [47]. The effect of the joint elements between 
the sheeting and the purlin is analysed by small component tests of the region, e.g. in Hungary 
in [46], as it is proposed in the standard [60]. In parallel with the experimental tests the 
development of finite element model is started on C- and Z-section purlins together with the 
sheeting, [49], [48], or by local model of the joint region, [50]. 

The European standard [60] handle the restraining effect of the sheeting by rotational 
spring on the top flange of the purlin, and the buckling of unrestrained flange is calculated as 
a beam on elastic foundation. Papers can be found on the literature with the purpose to refine 
the spring constants and the design method: [51], [52], [53].  

5.1.3. Conclusions on previous studies 

On the basis of the existing research studies the following conclusions can be drawn:  
- the lateral and rotational restrain effect on the local and distortional buckling modes 

of Z-purlins is widely analysed in the literature by both analytical and theoretical 
ways, 

- the standard design methods on restrained Z-purlins do not cover all the structural 
arrangements applied in the industry. 

In the investigated literature I did not find:  
- research to cover the behaviour of the overlapped region together with the 

restraining effect, 
- finite element model which combines behaviour modes of the overlap region and 

the cladding system,  
- complex algorithm, which can combine numerical model of all components of 

cold-formed thin-walled roof systems. 
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5.1.4. Purpose and research strategy 

The local purposes of the examined components of roof systems are presented in the 
previous chapters. The research of compressed Z-sections, continuous purlins and anti-sag 
elements led to the test based design resistances of each component. Furthermore, shell 
numerical models are developed of all components and partially the details of nonlinear 
simulation methods and necessary equivalent geometrical imperfections are verified by 
experimental tests in all cases.  

The global purpose of the dissertation is to develop a complex design method of thin-
walled roof systems that is applicable for practical design purpose. Various model and 
analysis levels are worked out from the beam model to shell finite element models, and from 
linear analysis to nonlinear simulations on imperfect models. The models of the roof system 
summarize the experiences on finite element modeling of cold-formed thin-walled members 
gathered during my research: 

- behaviour modes of compressed Z-purlins, 
- buckling mode classification and imperfection sensitivity analysis, 
- behaviour modes of overlap region, 
- rotational restraining effect of various cladding system, 
- behaviour modes of anti-sag system. 

The basic idea of the complex design method are implemented into an algorithm what 
controls the various model levels, and automatically can build the shell finite element models 
and evaluate the results of different analysis levels. The developed algorithm presented in 
Chapter 5.2. The models are presented in Chapter 5.3 and the design methodologies are 
detailed in Chapter 5.4. 

5.2 Target program for roof design – PurlinFED 
A target program, called PurlinFED (Purlin Finite Element Design), is developed in Matlab 

[65], what can prepare the data for design of roof systems. In this chapter the characteristics 
of the algorithm are presented. The available design methods are shown in a flowchart in 
Figure 91. 

The developed algorithm is able to model the whole roof system. The input data are the 
followings: 

- section: parametric or standardized C- and Z-sections, 
- geometry: spans, purlin distances, overlap lengths, places of purlins, places of anti-

sag bars and roof slope, 
- material: linear elastic, linear elastic-hardening plastic model, 
- cladding: parametric or unique floating or trapezoidal sheeting, 
- various surface loads and 
- support models. 

There are two model levels in the program: a beam model of purlins and a shell finite 
element model of the full roof system. The details of the shell model are presented in Chapter 
5.3. Different analysis can be handled by PurlinFED. Linear analysis is applied on beam 
model, while instability analysis and nonlinear simulation on imperfect model is carried out 
on the shell model. The eigenmode classification detailed in Chapter 2.4.3 is also built in the 
program. The program window can be seen in Figure 92. The three design methods are 
detailed in Chapter 5.4 and marked with different colors in Figure 91. 
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Figure 91. PurlinFED algorithm 

 

Figure 92. PurlinFED program window 
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5.3 Finite element model of roof system 
Shell numerical models are developed in Ansys [64] general purpose finite element 

software. The Matlab based PurlinFED program generates the input file on Ansys Parametric 
Design Languages.  

There are two types of roof systems, which can be modeled: trapezoidal sheeting (Figure 
11), and floating cladding system. The typical segment of the roof system consists of three 
purlins, which are modeled by 4-node-shell elements. The webs of purlins are divided equally 
into four parts; both flanges into two parts and both lips consist of one element in the cross 
section, as it can be seen in Figure 93. The length of elements in longitudinal direction is 50 
mm to get nearly square mesh in the web and a maximum 1/3 aspect ratio in the lip. Other 
mesh densities can be applied as well. In the double span model the overlap over the middle 
support is modeled by shell elements with double thickness. More advanced model of the 
overlap region of the two purlins is developed based on the experimental results in Chapter 3. 
Supports are applied on the lower flange, as in the experimental tests. However it is remarked 
that the more detailed support conditions have influence on the critical load factor and design 
resistance [56]. 

The specialty of the MR24 cladding system floating roof is the roof panels connection to 
each other with seams. In the FE model roof panels are modeled with shell elements. The 
seams are modeled with eccentric beam elements to consider its bending stiffness. The other 
specialty is the bridge system, where the bridge feet are modeled with shell elements, 
connected to the top of the purlin flange and to the roof panels. Over the purlin, in 
longitudinal direction beam elements are running with the cross-section of the bridge, which 
are also connected to the bridge feet and to the roof panels. The system contains transverse 
anti-sag bars and angels to support the lower flange of the main girder in horizontal direction. 
Angles can be modeled as simple horizontal support while the anti-sag bars as coupled nodes 
on each purlin webs connected to horizontal spring elements. More advanced model of the 
sag channels is developed based on the experimental results as detailed in Chapter 4. These 
spring elements model the supporting effect of the other – not loaded – part of the roof. The 
full model of the typical roof section consists of about 10000 elements depending on the 
structural arrangement. 

5.4 Design methodology 
In the typical roofs of steel industrial type buildings cold-formed purlins, as secondary 

structures, are used to support the load-bearing elements of the cladding system. The main 
characteristics of the behaviour of the typically used C-, Z- or ∑-sections are coming from the 
coupled plate and distortional buckling and lateral torsional global buckling modes. These 
phenomena are highly influenced by the structural arrangements of the purlin and cladding 
system [44]. The lateral and torsional supporting effect of the cladding to the purlin is 
influenced by several structural parameters what can be hardly considered without 
experimental studies. 

In the existing design codes the application rules use semi-empirical formulations with 
significant simplifications. It is proved that the purlin design method of Eurocode 3 [60] is 
conservative and benefits can be gained by improving the analysis model [56].  

5.4.1. Design method based on beam model 

The design method proposed by the Eurocode 3 is built in the PurlinFED program. The 
internal force distribution is calculated on a self-developed beam model. The rotational 
restraint of the cladding system is taken into account by the application of the Eurocode 3 
procedure [60]. 
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The more sophisticated design method – use the research results of the dissertation – is 
under development. The determined inertia factors in the overlap zone by the overlap tests 
(Chapter 3.5.4) to be implemented in the internal force calculation of the beam model. This 
modification takes into account the real distribution of the internal forces. The design of the 
end of overlap and end support resistances are based on the proposed design methods in 
Chapter 3.6. 

 
 

Figure 93. FE model details of the floating roof 

5.4.2. Design method based on shell finite element buckling modes 

In this case the same procedure is used as detailed previously, except that the calculation of 
rotational effect of the cladding system is based on the shell FE model. The full model of the 
roof systems takes into consideration the real rotational rigidity of the cladding system. The 
slenderness of lateral torsional buckling can be determined by instability analysis of the shell 
FE model. The automatic buckling mode classifications – detailed in Chapter 2.4 – help to 
choose the pure lateral torsional buckling mode. The reduction factor for stability checking is 
calculated from the numerically determined slenderness. 
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5.4.3. Design method based on nonlinear simulation on imperfect model

The most complex design method is the nonlinear simulation of imperfect shell finite 
element models. In the Eurocode 3 
application of shell finite elements, the size of the equiva
material models and other details of the modeling
case the nominal yield stress has to be applied and the ultimate load can be directly compared 
to the design loads. The proble
that there is no equivalent geometrical imperfection is specified, experimentally verified 
imperfection sensitivity analysis is needed what is presented in 
same cases. 

To illustrate the applicability of the proposed algorithm
qualitatively to the ultimate b
scale experimental program [47]
here, only two failure modes are illustrated by 

In the nonlinear analyses four 
first failure is the upper flange elastic distortional buckling. This mode occurs if the upper 
flange is slender due to the high lip or flange width to thickness ratio, or to the long lateral 
supporting distance (1200 mm) 

If the upper flange is supported laterally in smaller distances (600 mm) but slender enough 
to initiate the buckling, plastic distortional buckling occur, as in case of structural 
arrangement, Figure 94b. 

If both the upper flange suppo
distortional buckling cannot be occurred. In this case the phenomenon is plastic failure with 
high horizontal displacement of the lower flange, as it can be seen in 

The local failure mode is the web buckling at the end of the overlap near to the middle 
support. If the length of the overlap is relatively small (300 mm), the shear becomes dominant.

The experienced failures of the full
qualitative comparison of the results it can be concluded that the full FE model of the roof 
system built up by PurlinFED is can follow the behaviour of a full

 
 
 
 
 
 
 
 
 
 

Figure 94. Simulated failure modes
flange distortional buckling with plastic defomations

tension stress
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Design method based on nonlinear simulation on imperfect model 

ost complex design method is the nonlinear simulation of imperfect shell finite 
Eurocode 3 [61], design methods can be found, which details the 

application of shell finite elements, the size of the equivalent geometrical imperfections, the 
material models and other details of the modeling for welded and hot-rolled 
case the nominal yield stress has to be applied and the ultimate load can be directly compared 

The problem of the Eurocode 3 1-3 standard for cold
that there is no equivalent geometrical imperfection is specified, experimentally verified 
imperfection sensitivity analysis is needed what is presented in the previous chapters for the 

To illustrate the applicability of the proposed algorithm, the results are compared 
ultimate behaviour of a special purlin-cladding system studied by a full

[47]. The details of the experimental research are not presented 
here, only two failure modes are illustrated by photos and the FE model. 

In the nonlinear analyses four failures types occur, as they are presented in
s the upper flange elastic distortional buckling. This mode occurs if the upper 

flange is slender due to the high lip or flange width to thickness ratio, or to the long lateral 
supporting distance (1200 mm) Figure 94a. 

pper flange is supported laterally in smaller distances (600 mm) but slender enough 
to initiate the buckling, plastic distortional buckling occur, as in case of structural 

If both the upper flange supporting is efficient and the flange slenderness is small, the 
distortional buckling cannot be occurred. In this case the phenomenon is plastic failure with 
high horizontal displacement of the lower flange, as it can be seen in Figure 94

The local failure mode is the web buckling at the end of the overlap near to the middle 
support. If the length of the overlap is relatively small (300 mm), the shear becomes dominant.

failures of the full-scale tests are presented in Figure 95
qualitative comparison of the results it can be concluded that the full FE model of the roof 
system built up by PurlinFED is can follow the behaviour of a full-scale experimental test.

ailure modes: (a) upper flange distortional buckling
flange distortional buckling with plastic defomations, (c) lower flange deformation with high 

tension stress, (d) web buckling at the end of overlap 

ost complex design method is the nonlinear simulation of imperfect shell finite 
, design methods can be found, which details the 

lent geometrical imperfections, the 
rolled sections. In this 

case the nominal yield stress has to be applied and the ultimate load can be directly compared 
for cold-formed sections is 

that there is no equivalent geometrical imperfection is specified, experimentally verified 
the previous chapters for the 

results are compared 
cladding system studied by a full-

f the experimental research are not presented 

types occur, as they are presented in Figure 94. The 
s the upper flange elastic distortional buckling. This mode occurs if the upper 

flange is slender due to the high lip or flange width to thickness ratio, or to the long lateral 

pper flange is supported laterally in smaller distances (600 mm) but slender enough 
to initiate the buckling, plastic distortional buckling occur, as in case of structural 

rting is efficient and the flange slenderness is small, the 
distortional buckling cannot be occurred. In this case the phenomenon is plastic failure with 

Figure 94c. 
The local failure mode is the web buckling at the end of the overlap near to the middle 

support. If the length of the overlap is relatively small (300 mm), the shear becomes dominant. 
Figure 95. By the 

qualitative comparison of the results it can be concluded that the full FE model of the roof 
scale experimental test. 

 

a) upper flange distortional buckling, (b) upper 
c) lower flange deformation with high 
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Figure 95. Observed failure modes: (a) elastic distortional buckling and (b) plastic 
distortional buckling 

5.5 Conclusions and further studies 
The illustrative example of the proposed algorithm showed that it is able to model the real 

behaviour of a full roof-cladding system. The FE models of other complex details of the 
system are already exists and they are also able to model the real behaviour of purlins, purlin 
joints and anti-sag system elements. It can be concluded from the research results that shell 
finite element models of all components of a thin-walled roof system are developed and the 
complex model can be build with the PurlinFED algorithm and this algorithm helps in the 
evaluation of the results as well. 

Further numerical benchmark tests and parametric studies are needed to calibrate the 
proposed design method and to compare the results to the Eurocode proposals. The final aim 
of the research program is to improve the accuracy of the standards design method and to 
develop a user friendly advanced design tool for engineers. 

(b) (a) 
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6. Summary and conclusions 

6.1 New scientific results 

6.1.1. The theses of the PhD dissertation in English 

The presented research and its scientific results can be summarized as follows: 

Thesis 1 

I worked out and completed an experimental test program on compressed cold-formed 
thin-walled cold-formed Z-section members by different lateral support conditions and load 
introduction, which are not analysed previously.  

a) I experimentally defined the local, distortional and global behaviour modes of 
single Z-section members under compression.  

b) I defined the behaviour modes of compressed Z-section members laterally restraint 
by trapezoidal sheeting.  

c) I analysed the behaviour of overlapped zone of short double Z-section members 
under compression.  

Based on the experimental results I defined the test based design resistances of the studied 
compressed Z-section members.  

Thesis 2 

I developed a shell finite element model to be able to follow the behaviour of compressed 
Z-section members. By the model I completed an imperfection sensitivity analysis by 
geometrical and material nonlinear analysis. The equivalent geometrical imperfection was 
chosen according to the buckling modes of the model. I determined the effect of various types 
of buckling modes to the stiffness, the ultimate load and the ultimate behaviour of the 
structure. The classification of the buckling modes was performed by two ways: 

a) I worked out a method for the classification of the eigenmodes of shell finite 
element models, based on the geometrical definition of the buckling modes. The 
algorithm of the proposed method is built in a computer program developed for the 
FE analysis of cold-formed thin-walled roof systems. 

b) I performed a parametric study on classification of eigenmodes of thin-walled C-
and Z-section members by base functions of the constrained Finite Strip Method. I 
determined the participation of local, distortional and global buckling modes in 
case of various support conditions and mesh density and I proved the applicability 
of the method. 

Thesis 3 

I worked out and completed an experimental test program on various components of a 
continuous Z-purlin system. The specialty of the structural arrangement of the overlapped 
joint can be described as follows: (i) the width of the two flanges are the same, so the 
connection is prestressed and tight, (ii) the diameter of the holes of the bolts between the two 
purlins are significantly higher than the diameter of the bolts, and (iii) there is no bolt at the 
middle of the overlap in the web. I determined and characterized the behaviour modes and the 
test based design resistances for the following cases: 

a) I determined the test based design resistance of the end of overlap for various 
bending moment and shear force ratios. Based on the results I worked out a 
Eurocode 3 based design method for bending moment shear force interaction at the 
end of overlap.  
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b) I determined the test based design resistances of the middle of the overlap for 
various bending moment and transverse force ratios. Based on the results I proved 
that the Eurocode 3 design method is applicable for the overlap region.  

c) I determined the test based design resistances of the end support of a continuous 
purlin system. Based on the results I proposed the modification of the Eurocode 
design method. 

I developed shell finite element model of the applied overlap joint and I characterized the 
behaviour modes of the end-of-overlap and overlap support zones by the applied numerical 
studies. 

Thesis 4 

I worked out and performed an experimental test program for anti-sag elements of a cold-
formed thin-walled roof system. I characterized the behaviour modes and determined the test 
based design resistances of the following components: 

a) Cold-formed thin-walled U-shape sag channel under compression and tension. Two 
configurations are analysed: web with or without large openings. 

b) Adjustable piece element of the sag channel under compression and tension. I 
characterized the behaviour modes of the adjustable elements for various bolt 
positions. 

c) Peak element of the sag channel under compression and tension in case of various 
roof slopes. 

d) Flying sag systems in symmetrical and unsymmetrical structural arrangements.  
I developed a shell finite element model of the sag channel. I characterized the failure 

modes of the model and determined the equivalent geometrical imperfection by virtual tests.  

Thesis 5 

I worked out the bases and the algorithm of a complex design methodology of cold-formed 
thin-walled roof systems. The design method joins together the (i) test based design 
resistances of the components that have no standardized background and (ii) the Eurocode 3 
based nonlinear simulation on imperfect shell finite element models. The developed algorithm 
– called PurlinFED – contains three design levels for roof systems:  

a) beam model extended with the experimentally determined overlap rigidity and 
proposed design methods for end of overlap and end support, 

b) beam model extended with the shell finite element based buckling analysis, where 
the slenderness are determined from the full FE model of the roof system that 
contains the real rotational support provided by the cladding system to the purlin, 
and 

c) shell finite element model, where material and geometrical nonlinear simulations 
are carried out on imperfect model, the imperfections are based on the buckling 
modes of the purlin, which is classified by the built in buckling mode recognition 
algorithm. 
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6.1.2. The theses of the PhD dissertation in Hungarian 

Az ismertetett kutatás és annak tudományos eredményei a következőképpen foglalhatók 
össze: 

1. tézis 

Megterveztem és végrehajtottam egy kísérleti programot eddigiekben nem vizsgált hidegen 
alakított vékonyfalú Z-szelvényű nyomott elemek vizsgálatára különböző oldalirányú 
megtámasztási viszonyok és speciális erőbevezetés esetén: 

a) Kísérleti úton meghatároztam oldalirányban megtámasztatlan Z-szelvényű elemek 
lokális, torzulásos horpadás, illetve globális stabilitásvesztési módjait. 

b) Meghatároztam egyik övén trapézlemezzel megtámasztott Z-szelvényű nyomott 
elemek viselkedési módjait. 

c) Rövid, dupla Z-szelvényű próbatestek segítségével elemeztem az átlapolás 
környékének viselkedését nyomó igénybevételre. 

A kísérleti eredmények alapján meghatároztam a vizsgált nyomott Z-szelvényű elemek 
tervezési ellenállását.  

2. tézis 

Nyomott Z-szelvényű elemek viselkedésének modellezésére felületszerkezeti végeselemes 
modellt dolgoztam ki. A felületszerkezeti modellen anyagi- és geometriai nemlinearitás 
figyelembevételével imperfekció érzékenységi vizsgálatsorozatot hajtottam végre. A 
helyettesítő geometriai imperfekciót a modell sajátalakjai alapján vettem fel és 
meghatároztam azok hatását a szerkezet viselkedésére: merevség, teherbírás és tönkremeneteli 
mód. A sajátalakok elemzését kétféleképpen hajtottam végre: 

a) Módszert dolgoztam ki a felületszerkezeti végeselemes modell sajátalakjainak 
osztályozására az alap kihajlási és horpadási alakok geometriai definíciója alapján. 
A javasolt módszer algoritmusát beépítettem egy vékonyfalú tetőszerkezetek 
modellezését végző saját fejlesztésű számítógépes programba. 

b) Paraméteres vizsgálatsorozatot hajtottam végre vékonyfalú C- és Z-szelvények 
felületszerkezeti végeselemes modelljének sajátalakjainak osztályozására 
végessávos bázisfüggvények segítségével. Az osztályozás segítségével 
meghatároztam a lokális, a torzulásos horpadás és globális kihajlási alakok 
részarányát különböző megtámasztási viszonyok és hálósűrűség esetén, és 
bizonyítottam a módszer alkalmazhatóságát. 

3. tézis 

Megterveztem és végrehajtottam egy kísérleti programot folytatólagos Z-szelemenek 
különböző komponenseinek vizsgálatára. Az átlapolt kapcsolatot az alábbi speciális szerkezeti 
kialakításban vizsgáltam: (i) a Z-szelemenek övszélessége azonos, ezért az átlapolást 
összefeszítéssel kell kialakítani, (ii) a két szelement összekapcsoló csavarok lyukátmérője 
jelentősen nagyobb a csavarátmérőnél, illetve (iii) az átlapolás közepén a gerincben nincs 
csavar. Erre a szerkezeti kialakításra meghatároztam a viselkedési módokat és a tervezési 
teherbírás értékeket az alábbiak szerint: 

a) Meghatároztam az átlapolás végének tervezési ellenállását különböző nyomaték és 
nyíróerő arányok esetén. Az eredmények alapján az átlapolás végének nyomaték és 
nyíróerő interakciójának számítására Eurocode 3 alapú méretezési eljárást 
dolgoztam ki. 
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b) Meghatároztam az átlapolás közepének tervezési ellenállását különböző nyomaték 
és reakcióerő arányok esetén. Az eredmények alapján igazoltam, hogy az Eurocode 
3 szabványos méretezési eljárása alkalmazható az átlapolás közepének méretezésre. 

c) Külön vizsgálati programot dolgoztam ki egy szélső támasz feletti Z-szelemen 
beroppanásának vizsgálatára. A kísérletek alapján meghatároztam a viselkedési 
módjait és tervezési ellenállás értékeket. Az eredmények alapján javaslatot tettem 
az Eurocode 3 alapú méretezési eljárás módosítására. 

Kidolgoztam az alkalmazott átlapolás csomópont felületszerkezeti végeselemes modelljét 
és a végrehajtott numerikus vizsgálatokkal jellemeztem az átlapolás végének és a 
támaszkörnyezet viselkedési módjait. 

4. tézis 

Megterveztem és végrehajtottam egy kísérleti programot könnyűszerkezetes 
tetőszerkezetek kiegészítő elemeinek a vizsgálatára. Meghatároztam a vizsgált elemek 
viselkedési módjait és a tervezési ellenállásait az alábbiak szerint. 

a) Hidegen alakított vékonyfalú U-szelvényű szelemenkifüggesztő elem nyomásra és 
húzásra, kétféle konfigurációban: nagyméretű kivágással a gerincben, illetve 
kivágás nélkül.  

b) Állítható szelemenkifüggesztő elem nyomásra és húzásra, különböző 
csavarpozíciók esetén.  

c) Taréj eleme a szelemenkifüggesztő rendszernek nyomásra és húzásra különböző 
tetőhajlások esetén. 

d) A szelemen kifüggesztő rendszer rúdjai húzásra, szimmetrikus és nem 
szimmetrikus elrendezésben. 

Kidolgoztam a nyomott szelemenkifüggesztő elem felületszerkezeti végeselemes modelljét. 
Jellemeztem a modell tönkremeneteli módjait és meghatároztam virtuális kísérletekkel a 
helyettesítő geometriai imperfekcióit. 

5. tézis 

Kidolgoztam az alapjait és az algoritmusát könnyűszerkezetes tetők összetett méretezési 
módszerének. A méretezési módszer összekapcsolja a (i) kísérleti alapú ellenállásokat, 
amelyekhez nincsen szabványos háttér és (ii) az Eurocode 3 alapú imperfekt modellen alapuló 
nemlineáris szimulációt. A kifejlesztett algoritmus – PurlinFED – három különböző 
méretezési szintet tartalmaz tetőszerkezetekre vonatkozóan: 

a) rúdmodell kiegészítve a kísérleti úton meghatározott átlapolás merevségekkel és a 
javasolt méretezési eljárásokkal az átlapolás végére és a szélső támaszra 
vonatkozóan,  

b) rúdmodell kiegészítve héj végeselemes alapú stabilitásvizsgálattal, ahol a 
karcsúságot a teljes tetőszerkezet végeselemes modelljéből határozható meg, ami 
figyelembe veszi a burkolat valós megtámasztó hatását a szelemenre,  

c) héj végeselemes modell, ahol az anyagi és geometriai nemlineáris számítás 
imperfekt modellen alapul, az imperfekciókat a sajátalakokból származnak, 
melyeket a beépített osztályozó algoritmus segítségével választhatók ki. 

6.2 Application of the results 

6.2.1. Direct applications of the results 

The different test based design values and interaction curves of the overlapped connection 
are directly used in the daily design practice of Lindab and Astron companies. The results are 
built in the purlin design program developed by the team of F. Werner in Bauhaus University 



-  102 - 
 
 
 
 

Weimar, Germany. The stiffness characteristics of the overlap zone are also implemented. 
The test based design values of the various elements of the anti-sag system is also 
implemented in the Astron design methodology. 

6.2.2. Indirect application of the research method 

The research methods (experimental test – test based design – nonlinear simulation on 
shell finite element models) used in my research are also applied on other structural systems 
in the last years, as follows.  

The global stability analysis of the Pentele bridge in Dunaújváros: experimental analyses 
are carried out on the M=1:34 scale model of the bridge in the Structural Laboratory of the 
Department of Structural Engineering. Design method of arches for in-plane and out-of plane 
buckling are verified by the experimental tests. The results are used on beam and shell finite 
element models of the bridge model and the real bridge. The global stability of the arch in the 
erection and final stages are designed by the global finite element models of the bridge [67]-
[75]. This global model is used to determine the vibration characteristics of the bridge for 
dynamic calculations (wind and earthquake). 

Global shell finite element model is developed for the M0 highway bridge also to check 
the stress distribution at various locations of the steel deck plate [76]. 

The test based design values of horizontal bracing system connection to the column base 
are also determined by nonlinear finite element models [77] for Butler company. 

Large numbers of numerical simulations are executed on shell finite element models of 
steel frames to check existing buildings by advanced design method [78]. 

6.3 Further research 
In general the presented results are parts of the ongoing research on modern roof systems. 

Regarding the compressed Z-section members the design method and the application of 
numerical models in the advanced design has to be furthermore studied. The classification of 
the eigenmodes of compressed members by the cFSM base functions has to be extending to 
special members with holes, to be able to apply more generally. Further research is needed to 
develop a method where the base functions comes from the FE method and it can be used for 
members with variable height and special support conditions, respectively. 

Experimental and numerical researchers completed on overlapped connections of 
continuous purlins for specific structural arrangements. The developed FE model can be the 
basis of new design method of the overlap zone, which can be implemented in the standard 
design methodology. 

In case of the research of full roof systems the developed algorithm has to be extended to 
new structural details, and benchmark and parametric studies should be completed to prove 
the applicability of the design method. After that the advanced design method can be 
implemented into the design practice and can be applied to improve the structure and optimize 
purlin-roof systems.  

6.4 Main publications on the subject of the thesis 
International journal paper: [31] 
Papers in edited books: [55] 
International conference papers: [25], [26], [28], [30], [54], [56] 
Conference papers (abstract and presentation only): [27], [29], [41], [42] 
Research reports: [39], [40], [57], [58] 
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